Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338838

RESUMO

Dysfunctions of lipid metabolism are associated with tumor progression and treatment resistance of cutaneous melanoma. BRAF/MEK inhibitor resistance is linked to alterations of melanoma lipid pathways. We evaluated whether a specific lipid pattern characterizes plasma from melanoma patients and their response to therapy. Plasma samples from patients and controls were analyzed for FASN and DHCR24 levels and lipidomic profiles. FASN and DHCR24 expression resulted in association with disease condition and related to plasma cholesterol and triglycerides in patients at different disease stages (n = 144) as compared to controls (n = 115). Untargeted lipidomics in plasma (n = 40) from advanced disease patients and controls revealed altered levels of different lipids, including fatty acid derivatives and sphingolipids. Targeted lipidomics identified higher levels of dihydroceramides, ceramides, sphingomyelins, ganglioside GM3, sphingosine, sphingosine-1-phosphate, and dihydrosphingosine, saturated and unsaturated fatty acids. When melanoma patients were stratified based on a long/short-term clinical response to kinase inhibitors, differences in plasma levels were shown for saturated fatty acids (FA 16:0, FA18:0) and oleic acid (FA18:1). Our results associated altered levels of selected lipid species in plasma of melanoma patients with a more favorable prognosis. Although obtained in a small cohort, these results pave the way to lipidomic profiling for melanoma patient stratification.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/tratamento farmacológico , Ácidos Graxos/metabolismo , Esfingolipídeos , Triglicerídeos
2.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34948203

RESUMO

Moyamoya arteriopathy (MA) is a rare cerebrovascular disorder characterized by ischemic/hemorrhagic strokes. The pathophysiology is unknown. A deregulation of vasculogenic/angiogenic/inflammatory pathways has been hypothesized as a possible pathophysiological mechanism. Since lipids are implicated in modulating neo-vascularization/angiogenesis and inflammation, their deregulation is potentially involved in MA. Our aim is to evaluate angiogenic/vasculogenic/inflammatory proteins and lipid profile in plasma of MA patients and control subjects (healthy donors HD or subjects with atherosclerotic cerebrovascular disease ACVD). Angiogenic and inflammatory protein levels were measured by ELISA and a complete lipidomic analysis was performed on plasma by mass spectrometry. ELISA showed a significant decrease for MMP-9 released in plasma of MA. The untargeted lipidomic analysis showed a cumulative depletion of lipid asset in plasma of MA as compared to HD. Specifically, a decrease in membrane complex glycosphingolipids peripherally circulating in MA plasma with respect to HD was observed, likely suggestive of cerebral cellular recruitment. The quantitative targeted approach demonstrated an increase in free sphingoid bases, likely associated with a deregulated angiogenesis. Our findings indicate that lipid signature could play a central role in MA and that a detailed biomarker profile may contribute to untangle the complex, and still obscure, pathogenesis of MA.


Assuntos
Lipídeos/sangue , Doença de Moyamoya/sangue , Doenças Vasculares/sangue , Biomarcadores/sangue , Feminino , Humanos , Inflamação/sangue , Arteriosclerose Intracraniana/sangue , Lipidômica/métodos , Masculino , Pessoa de Meia-Idade , Neovascularização Patológica/sangue
3.
Biomedicines ; 9(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34572307

RESUMO

The role of S1P in Cystic Fibrosis (CF) has been investigated since 2001, when it was first described that the CFTR channel regulates the inward transport of S1P. From then on, various studies have associated F508del CFTR, the most frequent mutation in CF patients, with altered S1P expression in tissue and plasma. We found that human bronchial epithelial immortalized and primary cells from CF patients express more S1P than the control cells, as evidenced by mass spectrometry analysis. S1P accumulation relies on two- to four-fold transcriptional up-regulation of SphK1 and simultaneous halving of SGPL1 in CF vs. control cells. The reduction of SGPL1 transcription protects S1P from irreversible degradation, but the excessive accumulation is partially prevented by the action of the two phosphatases that are up-regulated compared to control cells. For the first time in CF, we describe that Spns2, a non-ATP dependent transporter that normally extrudes S1P out of the cells, shows deficient transcriptional and protein expression, thus impairing S1P accrual dissipation. The in vitro data on CF human bronchial epithelia correlates with the impaired expression of Spns2 observed in CF human lung biopsies compared to healthy control.

4.
Int J Mol Sci ; 22(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208778

RESUMO

Parkinson's disease (PD) is a proteinopathy associated with the aggregation of α-synuclein and the formation of lipid-protein cellular inclusions, named Lewy bodies (LBs). LB formation results in impaired neurotransmitter release and uptake, which involve membrane traffic and require lipid synthesis and metabolism. Lipids, particularly ceramides, are accumulated in postmortem PD brains and altered in the plasma of PD patients. Autophagy is impaired in PD, reducing the ability of neurons to clear protein aggregates, thus worsening stress conditions and inducing neuronal death. The inhibition of ceramide synthesis by myriocin (Myr) in SH-SY5Y neuronal cells treated with preformed α-synuclein fibrils reduced intracellular aggregates, favoring their sequestration into lysosomes. This was associated with TFEB activation, increased expression of TFEB and LAMP2, and the cytosolic accumulation of LC3II, indicating that Myr promotes autophagy. Myr significantly reduces the fibril-related production of inflammatory mediators and lipid peroxidation and activates NRF2, which is downregulated in PD. Finally, Myr enhances the expression of genes that control neurotransmitter transport (SNARE complex, VMAT2, and DAT), whose progressive deficiency occurs in PD neurodegeneration. The present study suggests that counteracting the accumulation of inflammatory lipids could represent a possible therapeutic strategy for PD.


Assuntos
Ceramidas/biossíntese , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animais , Vias Biossintéticas/efeitos dos fármacos , Linhagem Celular Tumoral , Gerenciamento Clínico , Suscetibilidade a Doenças , Ácidos Graxos Monoinsaturados/metabolismo , Humanos , Espaço Intracelular/metabolismo , Estresse Oxidativo , Doença de Parkinson/tratamento farmacológico , Esfingolipídeos/metabolismo
5.
Exp Eye Res ; 207: 108601, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33910035

RESUMO

Electrical stimulation (ES) of the eye represents a therapeutic approach in various clinical applications ranging from retinal dystrophies, age-related macular degeneration, retinal artery occlusion and nonarteritic ischemic optic neuropathy. In clinical practice, ES of the eye is mainly performed with a transcorneal or transpalpebral approach. These procedures are non-invasive and well-tolerated by the patients, reporting only minimal and transient adverse events, while serious adverse effects were not observed. Despite the growing literature on animal models, only clinical parameters have been investigated in humans and few data are available about biochemical changes induced by ES of the eye. The purpose of this study is to investigate the possible mechanism that regulates the beneficial effects of ES on retinal cells function and survival in humans. 28 patients undergoing pars plana vitrectomy (PPV) for idiopathic epiretinal membrane (iERM) were randomly divided in two groups: 13 patients were treated with transpalpebral ES before surgery and 15 underwent surgery with no prior treatment. Vitreous samples were collected for biochemical analysis during PPV. ES treatment leads to a reduction in the vitreous expression of both proinflammatory cytokines, namely IL-6 and IL-8, and proinflammatory lipid mediators, such as lysophosphatidylcholine. Indeed, we observed a 70% decrease of lysophosphatidylcholine 18:0, which has been proven to exert the greatest proinflammatory activities among the lysophosphatidylcholine class. The content of triglycerides is also affected and significantly decreased following ES application. The vitreous composition of patients undergoing PPV for iERM displays significant changes following ES treatment. Proinflammatory cytokines and bioactive lipid mediators expression decreases, suggesting an overall anti-inflammatory potential of ES. The investigation of the mechanism by which this treatment alters the retinal neurons leading to good outcomes is essential for supporting ES therapeutic application in various types of retinal diseases.


Assuntos
Citocinas/metabolismo , Terapia por Estimulação Elétrica , Membrana Epirretiniana/terapia , Lisofosfatidilcolinas/metabolismo , Triglicerídeos/metabolismo , Corpo Vítreo/metabolismo , Idoso , Idoso de 80 Anos ou mais , Ensaio de Imunoadsorção Enzimática , Membrana Epirretiniana/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espectrometria de Massas por Ionização por Electrospray , Vitrectomia
6.
Cell Signal ; 81: 109928, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33482299

RESUMO

Cystic fibrosis (CF) is a hereditary disease mostly related to ΔF508 CFTR mutation causing a proteinopathy that is characterized by multiple organ dysfunction, primarily lungs chronic inflammation, and infection. Defective autophagy and accumulation of the inflammatory lipid ceramide have been proposed as therapeutic targets. Accumulation of lipids and cholesterol was reported in the airways of CF patients, together with altered triglycerides and cholesterol levels in plasma, thus suggesting a disease-related dyslipidemia. Myriocin, an inhibitor of sphingolipids synthesis, significantly reduces inflammation and activates TFEB-induced response to stress, enhancing fatty acids oxidation and promoting autophagy. Myriocin ameliorates the response against microbial infection in CF models and patients' monocytes. Here we show that CF broncho-epithelial cells exhibit an altered distribution of intracellular lipids. We demonstrated that lipid accumulation is supported by an enhanced synthesis of fatty acids containing molecules and that Myriocin is able to reduce such accumulation. Moreover, Myriocin modulated the transcriptional profile of CF cells in order to restore autophagy, activate an anti-oxidative response, stimulate lipid metabolism and reduce lipid peroxidation. Moreover, lipid storage may be altered in CF cells, since we observed a reduced expression of lipid droplets related proteins named perilipin 3 and 5 and seipin. To note, Myriocin up-regulates the expression of genes that are involved in lipid droplets biosynthesis and maturation. We suggest that targeting sphingolipids de novo synthesis may counteract lipids accumulation by modulating CF altered transcriptional profile, thus restoring autophagy and lipid metabolism homeostasis.


Assuntos
Brônquios/metabolismo , Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Brônquios/patologia , Linhagem Celular Transformada , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/patologia , Células Epiteliais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/patologia , Metabolismo dos Lipídeos/genética
7.
Int J Mol Sci ; 23(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35008487

RESUMO

Peripheral nerve sheath tumors (PNSTs) include schwannomas, neurofibromas (NFs), and plexiform neurofibromas (PNFs), among others. While they are benign tumors, according to their biological behavior, some have the potential for malignant degeneration, mainly PNFs. The specific factors contributing to the more aggressive behavior of some PNSTs compared to others are not precisely known. Considering that lipid homeostasis plays a crucial role in fibrotic/inflammatory processes and in several cancers, we hypothesized that the lipid asset was also unbalanced in this group of nerve tumors. Through untargeted lipidomics, NFs presented a significant increase in ceramide, phosphatidylcholine, and Vitamin A ester. PNFs displayed a marked decrease in 34 out of 50 lipid class analyzed. An increased level of ether- and oxidized-triacylglycerols was observed; phosphatidylcholines were reduced. After sphingolipidomic analysis, we observed six sphingolipid classes. Ceramide and dihydroceramides were statistically increased in NFs. All the glycosylated species appeared reduced in NFs, but increased in PNFs. Our findings suggested that different subtypes of PNSTs presented a specific modulation in the lipidic profile. The untargeted and targeted lipidomic approaches, which were not applied until now, contribute to better clarifying bioactive lipid roles in PNS natural history to highlight disease molecular features and pathogenesis.


Assuntos
Lipídeos/fisiologia , Neoplasias de Bainha Neural/metabolismo , Neoplasias de Bainha Neural/patologia , Adulto , Idoso , Feminino , Homeostase/fisiologia , Humanos , Lipidômica/métodos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
Acta Neurochir (Wien) ; 163(3): 689-697, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-31950268

RESUMO

BACKGROUND: Skull base chordomas (SBC) are rare malignant tumors and few factors have been found to be reliable markers for clinical decision making and survival prognostication. The aim of the present work was to identify specific prognostic factors potentially useful for the management of SBC patients. METHODS: A retrospective review of all the patients diagnosed and treated for SBC at the Fondazione IRCCS Istituto Neurologico "Carlo Besta" between January 1992 and December 2017 has been performed. Survival analysis was performed and a logistic regression model was used. Statistically significant predictors were rated based on their log odds in order to preliminarily build a personalized grading scale-the Peri-Operative Chordoma Scale (POCS). RESULTS: Fifty-nine primary chordoma patients were included. The average follow-up from the first treatment was 82.6 months (95% CI, 65.5-99.7). POCS was built over PFS and MR contrast enhancement (intense vs mild/no, value 4), preoperative motor deficit (yes vs no, value 3), and the development of any postoperative complications (yes vs no, value 2). POCS ranges between 0 and 9, with higher scores being associated with reduced likelihood of survival and progression-free state. CONCLUSIONS: Our results show that preoperative clinical symptoms (motor deficits), surgical features (extent of tumor resection and surgeon's experience), development of postoperative complications, and KPS decline represent significant prognostic factors. The degree of MR contrast enhancement significantly correlated to both OS and PFS. We also preliminarily developed the POCS as a prognostic grading scale which may help neurosurgeons in the personalized management of patients undergoing potential adjuvant therapies.


Assuntos
Cordoma/cirurgia , Complicações Pós-Operatórias/epidemiologia , Neoplasias da Base do Crânio/cirurgia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Movimento , Procedimentos Neurocirúrgicos/efeitos adversos , Complicações Pós-Operatórias/diagnóstico , Período Pré-Operatório
9.
Theory Decis ; 91(2): 189-234, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33362305

RESUMO

Distributional justice-measured by the proportionality between effort exerted and rewards obtained-and guilt aversion-triggered by not fulfilling others' expectations-are widely acknowledged fundamental sources of pro-social behavior. We design three experiments to study the relevance of these sources of behavior when considered in interaction. In particular, we investigate whether subjects fulfill others' expectations also when this could produce inequitable allocations that conflict with distributional justice considerations. Our results confirm that both justice considerations and guilt aversion are important drivers of pro-social behavior, with the former having an overall stronger impact than the latter. Expectations of others are less relevant in environments more likely to nurture equitable outcomes.

10.
J Transl Med ; 18(1): 481, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33317546

RESUMO

BACKGROUND: In the past two decades, sphingolipids have become increasingly appreciated as bioactive molecules playing important roles in a wide array of pathophysiology mechanisms. Despite advances in the field, sphingolipids as nutrients remain little explored. Today the research is starting to move towards the study of the sphingomyelin content in human breast milk, recommended for feeding infants. METHODS: In the present study, we performed a lipidomic analysis in human breast milk in relation with maternal diet during pregnancy, in infant formulas, and in commercial whole and semi-skimmed milks for adults. Mediterranean, carnivorous and vegetarian diets were considered. RESULTS: The results showed that total sphingomyelin, ceramide and dihydroceramide species are independent on the diet. Interestingly, the milk sphingolipid composition is species-specific. In fact, infant formulas and commercial milks for adults have a lower level of total sphingomyelin and ceramide content than human breast milk with very different composition of each sphingolipid species. CONCLUSIONS: We conclude that human breast milk is a better source of sphingolipids than infant formulas for baby nutrition with potential implications for the brain development and cognitive functions.


Assuntos
Fórmulas Infantis , Leite , Adulto , Animais , Bovinos , Feminino , Humanos , Lactente , Recém-Nascido , Leite Humano , Gravidez , Esfingolipídeos
11.
Cells ; 9(8)2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781626

RESUMO

Cystic fibrosis (CF) is a hereditary disease, with 70% of patients developing a proteinopathy related to the deletion of phenylalanine 508. CF is associated with multiple organ dysfunction, chronic inflammation, and recurrent lung infections. CF is characterized by defective autophagy, lipid metabolism, and immune response. Intracellular lipid accumulation favors microbial infection, and autophagy deficiency impairs internalized pathogen clearance. Myriocin, an inhibitor of sphingolipid synthesis, significantly reduces inflammation, promotes microbial clearance in the lungs, and induces autophagy and lipid oxidation. RNA-seq was performed in Aspergillusfumigatus-infected and myriocin-treated CF patients' derived monocytes and in a CF bronchial epithelial cell line. Fungal clearance was also evaluated in CF monocytes. Myriocin enhanced CF patients' monocytes killing of A. fumigatus. CF patients' monocytes and cell line responded to infection with a profound transcriptional change; myriocin regulates genes that are involved in inflammation, autophagy, lipid storage, and metabolism, including histones and heat shock proteins whose activity is related to the response to infection. We conclude that the regulation of sphingolipid synthesis induces a metabolism drift by promoting autophagy and lipid consumption. This process is driven by a transcriptional program that corrects part of the differences between CF and control samples, therefore ameliorating the infection response and pathogen clearance in the CF cell line and in CF peripheral blood monocytes.


Assuntos
Aspergilose/metabolismo , Fibrose Cística , Ácidos Graxos Monoinsaturados/farmacologia , Expressão Gênica/efeitos dos fármacos , Inflamação/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Antifúngicos/farmacologia , Aspergilose/patologia , Autofagia , Linhagem Celular , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Humanos , Inflamação/patologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/microbiologia , Esfingolipídeos/metabolismo
12.
Proc Natl Acad Sci U S A ; 117(24): 13393-13398, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32482856

RESUMO

Climate engineering-the deliberate large-scale manipulation of the Earth's climate system-is a set of technologies for reducing climate-change impacts and risks. It is controversial and raises novel governance challenges [T. C. Schelling, Climatic Change, 33, 303-307 (1996); J. Virgoe, Climatic Change, 95, 103-119 (2008)]. We focus on the strategic implications of solar geoengineering. When countries engineer the climate, conflict can arise because different countries might prefer different temperatures. This would result in too much geoengineering: the country with the highest preference for geoengineering cools the planet beyond what is socially optimal at the expense of the others-a theoretical possibility termed "free-driving" [M. L. Weitzman, Scand. J. Econ., 117, 1049-1068 (2015)]. This study is an empirical test of this hypothesis. We carry out an economic laboratory experiment based on a public "good or bad" game. We find compelling evidence of free-driving: global geoengineering exceeds the socially efficient level and leads to welfare losses. We also evaluate the possibility of counteracting the geoengineering efforts of others. Results show that countergeoengineering generates high payoff inequality as well as heavy welfare losses, resulting from both strategic and behavioral factors. Finally, we compare strategic behavior in bilateral and multilateral settings. We find that welfare deteriorates even more under multilateralism when countergeoengineering is a possibility. These results have general implications for governing global good or bad commons.

13.
Front Neurosci ; 14: 372, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32435178

RESUMO

Tvrm4 mice, a model of autosomal dominant retinitis pigmentosa (RP), carry a mutation of Rhodopsin gene that can be activated by brief exposure to very intense light. Here, we test the possibility of an anatomical, metabolic, and functional recovery by delivering to degenerating Tvrm4 animals, Myriocin, an inhibitor of ceramide de novo synthesis previously shown to effectively slow down retinal degeneration in rd10 mutants (Strettoi et al., 2010; Piano et al., 2013). Different routes and durations of Myriocin administration were attempted by using either single intravitreal (i.v.) or long-term, repeated intraperitoneal (i.p.) injections. The retinal function of treated and control animals was tested by ERG recordings. Retinas from ERG-recorded animals were studied histologically to reveal the extent of photoreceptor death. A correlation was observed between Myriocin administration, lowering of retinal ceramides, and preservation of ERG responses in i.v. injected cases. Noticeably, the i.p. treatment with Myriocin decreased the extension of the retinal-degenerating area, preserved the ERG response, and correlated with decreased levels of biochemical indicators of retinal oxidative damage. The results obtained in this study confirm the efficacy of Myriocin in slowing down retinal degeneration in genetic models of RP independently of the underlying mutation responsible for the disease, likely targeting ceramide-dependent, downstream pathways. Alleviation of retinal oxidative stress upon Myriocin treatment suggests that this molecule, or yet unidentified metabolites, act on cellular detoxification systems supporting cell survival. Altogether, the pharmacological approach chosen here meets the necessary pre-requisites for translation into human therapy to slow down RP.

14.
Cells ; 9(5)2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408521

RESUMO

Altered lipid metabolism has been associated to cystic fibrosis disease, which is characterized by chronic lung inflammation and various organs dysfunction. Here, we present the validation of an untargeted lipidomics approach based on high-resolution mass spectrometry aimed at identifying those lipid species that unequivocally sign CF pathophysiology. Of n.13375 mass spectra recorded on cystic fibrosis bronchial epithelial airways epithelial cells IB3, n.7787 presented the MS/MS data, and, after software and manual validation, the final number of annotated lipids was restricted to n.1159. On these lipids, univariate and multivariate statistical approaches were employed in order to select relevant lipids for cellular phenotype discrimination between cystic fibrosis and HBE healthy cells. In cystic fibrosis IB3 cells, a pervasive alteration in the lipid metabolism revealed changes in the classes of ether-linked phospholipids, cholesterol esters, and glycosylated sphingolipids. Through functions association, it was evidenced that lipids variation involves the moiety implicated in membrane composition, endoplasmic reticulum, mitochondria compartments, and chemical and biophysical lipids properties. This study provides a new perspective in understanding the pathogenesis of cystic fibrosis and strengthens the need to use a validated mass spectrometry-based lipidomics approach for the discovery of potential biomarkers and perturbed metabolism.


Assuntos
Fibrose Cística/metabolismo , Lipidômica , Lipídeos/análise , Vias Biossintéticas , Linhagem Celular , Análise Discriminante , Células Epiteliais/metabolismo , Humanos , Análise dos Mínimos Quadrados , Metabolismo dos Lipídeos , Lipídeos/biossíntese , Fenótipo
15.
Mol Neurobiol ; 57(7): 2934-2943, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32430844

RESUMO

Neuronal homeostasis depends on both simple and complex sugars (the glycoconjugates), and derangement of their metabolism is liable to impair neural function and lead to neurodegeneration. Glucose levels boost glycation phenomena, a wide series of non-enzymatic reactions that give rise to various intermediates and end-products that are potentially dangerous in neurons. Glycoconjugates, including glycoproteins, glycolipids, and glycosaminoglycans, contribute to the constitution of the unique features of neuron membranes and extracellular matrix in the nervous system. Glycosylation defects are indeed frequently associated with nervous system disturbances and neurodegeneration. Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms associated with the loss of dopaminergic neurons in the pars compacta of the substantia nigra. Neurons present intracytoplasmic inclusions of α-synuclein aggregates involved in the disease pathogenesis together with the impairment of the autophagy-lysosome function, oxidative stress, and defective traffic and turnover of membrane components. In the present review, we selected relevant recent contributions concerning the direct involvement of glycation and glycosylation in α-synuclein stability, impaired autophagy and lysosomal function in PD, focusing on potential models of PD pathogenesis provided by genetic variants of glycosphingolipid processing enzymes, especially glucocerebrosidase (GBA). Moreover, we collected data aimed at defining the glycomic profile of PD patients as a tool to help in diagnosis and patient subtyping, as well as those pointing to sugar-related compounds with potential therapeutic applications in PD.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Glucose/metabolismo , Glicoconjugados/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animais , Autofagia/fisiologia , Humanos , Corpos de Inclusão/metabolismo , Estresse Oxidativo/fisiologia , Transtornos Parkinsonianos/metabolismo
16.
Int J Mol Sci ; 21(6)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188137

RESUMO

UDP-glucose (UDP-Glc) is synthesized by UGP2-encoded UDP-Glc pyrophosphorylase (UGP) and is required for glycoconjugate biosynthesis and galactose metabolism because it is a uridyl donor for galactose-1-P (Gal1P) uridyltransferase. Chinese hamster lung fibroblasts harboring a hypomrphic UGP(G116D) variant display reduced UDP-Glc levels and cannot grow if galactose is the sole carbon source. Here, these cells were cultivated with glucose in either the absence or presence of galactose in order to investigate glycoconjugate biosynthesis and galactose metabolism. The UGP-deficient cells display < 5% control levels of UDP-Glc/UDP-Gal and > 100-fold reduction of [6-3H]galactose incorporation into UDP-[6-3H]galactose, as well as multiple deficits in glycoconjugate biosynthesis. Cultivation of these cells in the presence of galactose leads to partial restoration of UDP-Glc levels, galactose metabolism and glycoconjugate biosynthesis. The Vmax for recombinant human UGP(G116D) with Glc1P is 2000-fold less than that of the wild-type protein, and UGP(G116D) displayed a mildly elevated Km for Glc1P, but no activity of the mutant enzyme towards Gal1P was detectable. To conclude, although the mechanism behind UDP-Glc/Gal production in the UGP-deficient cells remains to be determined, the capacity of this cell line to change its glycosylation status as a function of extracellular galactose makes it a useful, reversible model with which to study different aspects of galactose metabolism and glycoconjugate biosynthesis.


Assuntos
Galactose/biossíntese , Glicoconjugados/biossíntese , UTP-Glucose-1-Fosfato Uridililtransferase/genética , Animais , Encefalopatias/metabolismo , Linhagem Celular , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Cricetinae , Meios de Cultura/química , Glicoesfingolipídeos , Glicosilação , Humanos , Cinética , Pulmão , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Uridina Difosfato Glucose/biossíntese
17.
Cell Physiol Biochem ; 54(1): 110-125, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31999897

RESUMO

BACKGROUND/AIMS: Cystic Fibrosis (CF) is an inherited disease associated with a variety of mutations affecting the CFTR gene. A deletion of phenylalanine 508 (F508) affects more than 70% of patients and results in unfolded proteins accumulation, originating a proteinopathy responsible for inflammation, impaired trafficking, altered metabolism, cholesterol and lipids accumulation, impaired autophagy at the cellular level. Lung inflammation has been extensively related to the accumulation of the lipotoxin ceramide. We recently proved that inhibition of ceramide synthesis by Myriocin reduces inflammation and ameliorates the defence response against pathogens infection, which is downregulated in CF. Here, we aim at demonstrating the mechanisms of Myriocin therapeutic effects in Cystic Fibrosis broncho-epithelial cells. METHODS: The effect of Myriocin treatment, on F508-CFTR bronchial epithelial cell line IB3-1 cells, was studied by evaluating the expression of key proteins and genes involved in autophagy and lipid metabolism, by western blotting and real time PCR. Moreover, the amount of glycerol-phospholipids, triglycerides, and cholesterols, sphingomyelins and ceramides were measured in treated and untreated cells by LC-MS. Finally, Sptlc1 was transiently silenced and the effect on ceramide content, autophagy and transcriptional activities was evaluated as above mentioned. RESULTS: We demonstrate that Myriocin tightly regulates metabolic function and cell resilience to stress. Myriocin moves a transcriptional program that activates TFEB, major lipid metabolism and autophagy regulator, and FOXOs, central lipid metabolism and anti-inflammatory/anti-oxidant regulators. The activity of these transcriptional factors is associated with the induction of PPARs nuclear receptors activity, whose targets are genes involved in lipid transport compartmentalization and oxidation. Transient silencing of SPTCL1 recapitulates the effects induced by Myriocin. CONCLUSION: Cystic Fibrosis bronchial epithelia accumulate lipids, exacerbating inflammation. Myriocin administration: i) activates the transcriptions of genes involved in enhancing autophagy-mediated stress clearance; ii) reduces the content of several lipid species and, at the same time, iii) enhances mitochondrial lipid oxidation. Silencing the expression of Sptlc1 reproduces Myriocin induced autophagy and transcriptional activities, demonstrating that the inhibition of sphingolipid synthesis drives a transcriptional program aimed at addressing cell metabolism towards lipid oxidation and at exploiting autophagy mediated clearance of stress. We speculate that regulating sphingolipid de novo synthesis can relieve from chronic inflammation, improving energy supply and anti-oxidant responses, indicating an innovative therapeutic strategy for CF.


Assuntos
Ácidos Graxos Monoinsaturados/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Esfingolipídeos/metabolismo , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem Celular , Colesterol/análise , Cromatografia Líquida de Alta Pressão , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Humanos , Espectrometria de Massas , PPAR gama/genética , PPAR gama/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Serina C-Palmitoiltransferase/antagonistas & inibidores , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/análise , Esfingomielinas/análise
18.
Foods ; 9(2)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31972966

RESUMO

The densely packed storage of valuable nutrients (carbohydrates, lipids, proteins, micronutrients) in the endosperm of nuts and seeds makes the study of their complex composition a topic of great importance. Ceramides in the total lipid extract of some ground almonds and pistachios were searched with a systematic innovative discovery precursor ion scan in a triple quadrupole tandem mass spectrometry, where iso-energetic collision activated dissociation was performed. Five descriptors were used to search components with different C18 long chain bases containing different structural motifs (d18:0, d18:1, d18:2, t18:0, t18:1). The presence of hexoside unit was screened with a specific neutral loss experiment under iso-energetic collision activated dissociation conditions. The discovery scans highlighted the presence of two specific hexosyl-ceramides with a modified sphingosine component (d18:2) and C16:0 or C16:0 hydroxy-fatty acids. The hexosyl-ceramide with the non-hydroxylated fatty acid seemed specific of pistachios and was undetected in almonds. The fast and comprehensive mass spectrometric method used here can be useful to screen lipid extracts of several more seeds of nutraceutical interest, searching for unusual and/or specific sphingosides with chemically decorated long chain bases.

19.
Curr Med Chem ; 27(24): 4039-4061, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31057101

RESUMO

Almost no neurological disease exists without microglial activation. Microglia has exert a pivotal role in the maintenance of the central nervous system and its response to external and internal insults. Microglia have traditionally been classified as, in the healthy central nervous system, "resting", with branched morphology system and, as a response to disease, "activated", with amoeboid morphology; as a response to diseases but this distinction is now outmoded. The most devastating disease that hits the brain is cancer, in particular glioblastoma. Glioblastoma multiforme is the most aggressive glioma with high invasiveness and little chance of being surgically removed. During tumor onset, many brain alterations are present and microglia have a major role because the tumor itself changes microglia from the pro-inflammatory state to the anti-inflammatory and protects the tumor from an immune intervention. What are the determinants of these changes in the behavior of the microglia? In this review, we survey and discuss the role of sphingolipids in microglia activation in the progression of brain tumors, with a particular focus on glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Encéfalo , Humanos , Macrófagos , Microglia , Esfingolipídeos
20.
Int J Biochem Cell Biol ; 116: 105622, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31563560

RESUMO

Ceramide is emerging as one of the players of inflammation in lung diseases. However, data on its inflammatory role in Cystic Fibrosis (CF) as part of the extracellular machinery driven by lung mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) are missing. We obtained an in vitro model of CF-MSC by treating control human lung MSCs with a specific CFTR inhibitor. We characterized EVs populations derived from MSCs (ctr EVs) and CF-MSCs (CF-EVs) and analyzed their sphingolipid profile by LC-MS/MS. To evaluate their immunomodulatory function, we treated an in vitro human model of CF, with both EVs populations. Our data show that the two EVs populations differ for the average size, amount, and rate of uptake. CF-EVs display higher ceramide and dihydroceramide accumulation as compared to control EVs, suggesting the involvement of the de novo biosynthesis pathway in the parental CF-MSCs. Higher sphingomyelinase activity in CF-MSCs, driven by inflammation-induced ceramide accumulation, sustains the exocytosis of vesicles that export new formed pro-inflammatory ceramide. Our results suggest that CFTR dysfunction associates with an enhanced sphingolipid metabolism leading to the release of EVs that export the excess of pro-inflammatory Cer to the recipient cells, thus contributing to maintain the unresolved inflammatory status of CF.


Assuntos
Ceramidas/farmacologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Vesículas Extracelulares/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Ceramidas/metabolismo , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Exocitose , Vesículas Extracelulares/metabolismo , Expressão Gênica , Humanos , Inflamação , Pulmão/metabolismo , Pulmão/patologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Modelos Biológicos , Cultura Primária de Células , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Tiazolidinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA