Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1325048, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371405

RESUMO

Introduction: Flavonoids are among the main plant root exudation components, and, in addition to their role in symbiosis, they can broadly affect the functionality of plant-associated microbes: in polluted environments, for instance, flavonoids can induce the expression of the enzymatic degradative machinery to clean-up soils from xenobiotics like polychlorinated biphenyls (PCBs). However, their involvement in root community recruitment and assembly involving non-symbiotic beneficial interactions remains understudied and may be crucial to sustain the holobiont fitness under PCB stress. Methods: By using a set of model pure flavonoid molecules and a natural blend of root exudates (REs) with altered flavonoid composition produced by Arabidopsis mutant lines affected in flavonoid biosynthesis and abundance (null mutant tt4, flavonoid aglycones hyperproducer tt8, and flavonoid conjugates hyperaccumulator ttg), we investigated flavonoid contribution in stimulating rhizocompetence traits and the catabolic potential of the model bacterial strain for PCB degradation Paraburkholderia xenovorans LB400. Results: Flavonoids influenced the traits involved in bacterial recruitment in the rhizoplane by improving chemotaxis and motility responses, by increasing biofilm formation and by promoting the growth and activation of the PCB-degradative pathway of strain LB400, being thus potentially exploited as carbon sources, stimulating factors and chemoattractant molecules. Indeed, early rhizoplane colonization was favored in plantlets of the tt8 Arabidopsis mutant and reduced in the ttg line. Bacterial growth was promoted by the REs of mutant lines tt4 and tt8 under control conditions and reduced upon PCB-18 stress, showing no significant differences compared with the WT and ttg, indicating that unidentified plant metabolites could be involved. PCB stress presumably altered the Arabidopsis root exudation profile, although a sudden "cry-for-help" response to recruit strain LB400 was excluded and flavonoids appeared not to be the main determinants. In the in vitro plant-microbe interaction assays, plant growth promotion and PCB resistance promoted by strain LB400 seemed to act through flavonoid-independent mechanisms without altering bacterial colonization efficiency and root adhesion pattern. Discussions: This study further contributes to elucidate the vast array of functions provided by flavonoids in orchestrating the early events of PCB-degrading strain LB400 recruitment in the rhizosphere and to support the holobiont fitness by stimulating the catabolic machinery involved in xenobiotics decomposition and removal.

2.
Microorganisms ; 10(12)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36557733

RESUMO

Flavonoids are a broad class of secondary metabolites with multifaceted functionalities for plant homeostasis and are involved in facing both biotic and abiotic stresses to sustain plant growth and health. Furthermore, they were discovered as mediators of plant networking with the surrounding environment, showing a surprising ability to perform as signaling compounds for a multitrophic inter-kingdom level of communication that influences the plant host at the phytobiome scale. Flavonoids orchestrate plant-neighboring plant allelopathic interactions, recruit beneficial bacteria and mycorrhizal fungi, counteract pathogen outbreak, influence soil microbiome and affect plant physiology to improve its resilience to fluctuating environmental conditions. This review focuses on the diversified spectrum of flavonoid functions in plants under a variety of stresses in the modulation of plant morphogenesis in response to environmental clues, as well as their role as inter-kingdom signaling molecules with micro- and macroorganisms. Regarding the latter, the review addresses flavonoids as key phytochemicals in the human diet, considering their abundance in fruits and edible plants. Recent evidence highlights their role as nutraceuticals, probiotics and as promising new drugs for the treatment of several pathologies.

3.
Environ Microbiol ; 23(10): 5690-5703, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34139059

RESUMO

An open question in environmental ecology regards the mechanisms triggered by root chemistry to drive the assembly and functionality of a beneficial microbiome to rapidly adapt to stress conditions. This phenomenon, originally described in plant defence against pathogens and predators, is encompassed in the 'cry-for-help' hypothesis. Evidence suggests that this mechanism may be part of the adaptation strategy to ensure the holobiont fitness in polluted environments. Polychlorinated biphenyls (PCBs) were considered as model pollutants due to their toxicity, recalcitrance and poor phyto-extraction potential, which lead to a plethora of phytotoxic effects and rise environmental safety concerns. Plants have inefficient detoxification processes to catabolize PCBs, even leading to by-products with a higher toxicity. We propose that the 'cry-for-help' mechanism could drive the exudation-mediated recruitment and sustainment of the microbial services for PCBs removal, exerted by an array of anaerobic and aerobic microbial degrading populations working in a complex metabolic network. Through this synergistic interaction, the holobiont copes with the soil contamination, releasing the plant from the pollutant stress by the ecological services provided by the boosted metabolism of PCBs microbial degraders. Improving knowledge of root chemistry under PCBs stress is, therefore, advocated to design rhizoremediation strategies based on plant microbiome engineering.


Assuntos
Microbiota , Bifenilos Policlorados , Poluentes do Solo , Biodegradação Ambiental , Poluição Ambiental , Bifenilos Policlorados/análise , Bifenilos Policlorados/metabolismo , Solo , Microbiologia do Solo , Poluentes do Solo/metabolismo
4.
ACS Omega ; 5(8): 4322-4329, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32149262

RESUMO

The potential of lignosulfonates as widely underutilized byproducts of the pulp and paper industry for the synthesis of a biodegradable pesticide carrier system was assessed in this study. Design of experiment software MODDE Pro was for the first time applied to optimize lignosulfonate granule production using Myceliophthora thermophila laccase as a biocatalyst. Enzymatic cross-linking was monitored using size exclusion chromatography coupled online to multiangle laser light scattering, viscosity measurement, and enzyme activity. The determined optimal and experimentally confirmed incubation conditions were: 33 °C, 30 cm3/min O2 supply, and 190 min reaction time. The granules were thereafter loaded with 2 g/kg 3,6-dichloro-2-methoxybenzoic acid (Dicamba), a broad-spectrum herbicide. According to the HPLC analysis, complete release of Dicamba was achieved after 48 h of release. This study showed the green production of a 100% lignosulfonate-based biodegradable solid carrier with potential application in agriculture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA