Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Family Med Prim Care ; 12(4): 632-636, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37312796

RESUMO

Background and Purpose: Dental treatment under general anesthesia (GA) is one of the common treatment methods today for dental treatment in children, so dentists' point of view in this field is very important. Therefore, the purpose of this study was evaluation the awareness and attitude of pediatric dentists and final-year dental students about dental treatment for children under GA. Methods: To conduct this study, 150 people, including 75 general dentists (GD) and 75 final-year dental students (FYDS), were randomly selected in Tehran. In this study, a researcher-made questionnaire containing 15 questions (7 awareness questions and 8 attitude questions) was used to evaluate the awareness and attitude of the participants. After extracting the raw results, statistical analysis of the results was done using SPSS-Ver. 22 software. Results: 60% of the participants (90 people) were men and the remaining 40% (60 people) were women. The results showed that the level of awareness of male dentists was significantly higher than that of female dentists (P = 0.015). In addition, although the awareness level of FYDS was lower than GD, this difference was not statistically significant (P = 0.130). The average level of awareness among different age groups had a significant difference (P = 0.009), so the age group of 36-45 years compared to the younger age groups (25-35 years) and the older age groups (36-45 and 55 -46 years), had a higher level of awareness. Conclusion: According to the findings, it can be concluded that it is necessary to use appropriate educational methods to improve the level of awareness and attitude of children's dentists.

2.
J Biomater Appl ; 37(8): 1470-1485, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36318091

RESUMO

Limitations in liver transplantation and advances in cell therapy methods motivated us to study primary hepatocytes. The main challenge in using primary hepatocytes for liver regeneration is that they lose their functionalities. We aimed to develop a controlled-shape hydrogel and apply the conditioned-media of mesenchymal stromal cells (CM-MSCs) to improve in vitro hepatocyte functions. In this experimental study, following rat hepatocyte isolation by collagenase perfusion and collection of human umbilical cord CM-MSCs, a simple and precise system called electrodeposition was used to produce the patterned alginate hydrogel. To reduce the cytopathic effects, we used an indirect electrodeposition method. For characterizing this structure, mechanical properties, Fourier-transform infrared spectroscopy (FTIR), water uptake, in-vitro degradation, and hydrogel stability were studied. Urea synthesis as a basic function of hepatocytes was assessed in five different groups. Scanning electron microscope (SEM) was utilized to evaluate the primary hepatocyte morphology and their dispersion in the fabricated structure. We observed a significant increase in urea synthesis in the presence of CM-MSCs in patterned hydrogel alginate compared to 2D culture on day 3 (p<0.05). However, there was no significant difference in simple and patterned hydrogel on day 2. We found that the electrodeposition method is appropriate for the rapid fabricating of hydrogel structures with arbitrary patterns for 3D cell culture.


Assuntos
Alginatos , Hidrogéis , Ratos , Humanos , Animais , Hidrogéis/metabolismo , Meios de Cultivo Condicionados , Alginatos/química , Ureia , Hepatócitos , Cordão Umbilical , Sódio/metabolismo
3.
SLAS Discov ; 27(6): 331-336, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35667647

RESUMO

Current methods for the screening of viral infections in clinical settings, such as reverse transcription polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA), are expensive, time-consuming, require trained personnel and sophisticated instruments. Therefore, novel sensors that can save time and cost are required specially in remote areas and developing countries that may lack the advanced scientific infrastructure for this task. In this work, we present a sensitive, and highly specific biosensing approach for the detection of harmful viruses that have cysteine residues within the structure of their cell surface proteins. We utilized new method for the rapid screening of SARS-CoV-2 virus in biological fluids through its S1 protein by surface enhanced Raman spectroscopy (SERS). The protein is captured from aqueous solutions and biological specimens using a target-specific extractor substrate. The structure of the purified protein is then modified to convert it into a bio-thiol by breaking the disulfide bonds and freeing up the sulfhydryl (SH) groups of the cysteine residues. The formed biothiol chemisorbs favourably onto a highly sensitive plasmonic sensor and probed by a handheld Raman device in few seconds. The new method was used to screen the S1 protein in aqueous medium, spiked human blood plasma, mucus, and saliva samples down to 150 fg/L. The label-free SERS biosensing method has strong potential for the fingerprint identification many viruses (e.g. the human immunodeficiency virus, the human polyomavirus, the human papilloma virus, the adeno associated viruses, the enteroviruses) through the cysteine residues of their capsid proteins. The new method can be applied at points of care (POC) in remote areas and developing countries lacking sophisticated scientific infrastructure.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Cisteína , Ouro/química , Humanos , Limite de Detecção , Proteínas de Membrana
4.
Talanta ; 248: 123630, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35660992

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a serious threat to human health. Current methods such as reverse transcription polymerase chain reaction (qRT-PCR) are complex, expensive, and time-consuming. Rapid, and simple screening methods for the detection of SARS-CoV-2 are critically required to fight the current pandemic. In this work we present a proof of concept for, a simple optical sensing method for the screening of SARS-CoV-2 through its spike protein subunit S1. The method utilizes a target-specific extractor chip to bind the protein from the biological specimens. The disulfide bonds of the protein are then reduced into a biothiol with sulfhydryl (SH) groups that react with a blue-colored benzothiazole azo dye-Hg complex (BAN-Hg) and causes the spontaneous change of its blue color to pink which is observable by the naked eye. A linear relationship between the intensity of the pink color and the logarithm of reduced S1 protein concentration was found within the working range 130 ng.mL-1-1.3 pg mL-1. The lowest limit of detection (LOD) of the assay was 130 fg mL-1. A paper based optical sensor was fabricated by loading the BAN-Hg sensor onto filter paper and used to screen the S1 protein in spiked saliva and patients' nasopharyngeal swabs. The results obtained by the paper sensor corroborated with those obtained by qRT-PCR. The new paper-based sensing method can be extended to the screening of many viruses (e.g. the human immunodeficiency virus, the human polyomavirus, the human papilloma virus, the adeno associated viruses, the enteroviruses) through the cysteine residues of their capsid proteins. The new method has strong potential for screening viruses at pathology labs and in remote areas that lacks advanced scientific infrastructure. Further clinical studies are warranted to validate the new sensing method.


Assuntos
COVID-19 , Mercúrio , COVID-19/diagnóstico , Cisteína , Humanos , Proteínas de Membrana , SARS-CoV-2/genética
5.
J Family Med Prim Care ; 11(12): 7616-7620, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36994049

RESUMO

Background and Aim: Evaluating the effect of different surface treatment methods on flexural strength (FS) and elasticity modules (EM) related to fiber posts is very important. The main purpose of this study was to evaluate the effect of different surface treatment methods on FS and EM of quartz and glass fiber-based posts in the form of a narrative review study. Materials and Methods: To conduct this study, all studies related to the subject under discussion during the years 2022-2000 by systematic search in internationally available databases, including Web of Science, Science Direct, Scopus, PubMed, and Google Scholar, were checked out. Finally, completely relevant studies were selected to investigate the main objective. Results: The results showed that before surface preparation, FS and elasticity coefficient (EC) of quartz fiber-based posts were higher than glass fiber. According to the results of some previous studies, surface preparation of glass and quartz fiber posts by laser and 10% hydrogen peroxide has no effect on their FS and elasticity. Findings of some other studies showed that the laser method than air abrasion can be a more suitable method for preparing the surface of fiber posts before the bonding process. In some other studies, it was reported that the Airborne-particle abrasion (Al2O3) method produced a higher amount of FS than the laser. Conclusion: Based on the results of previous similar studies, it can be concluded that the results of previous studies are very contradictory, and therefore, it is not possible to provide a completely superior surface treatment method to increase flexural strength. The amount of flexural strength depends mainly on the intrinsic properties of the fiber post.

6.
Front Bioeng Biotechnol ; 10: 1075166, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686232

RESUMO

For the purpose of developing a 3D vehicle for the delivery of hepatocytes in cell therapy, the improved system of crosslinker and new gelling agent combinations consisting of glycerophosphate and sodium hydrogen carbonate have been employed to produce injectable, thermoresponsive hydrogels based on chitosan and silk fibroin. Adjusting the polymer-to-gelling agent ratio and utilizing a chemical crosslinker developed hydrogel scaffolds with optimal gelling time and pH. Applying sodium hydrogen carbonate neutralizes chitosan while keeping its thermoresponsive characteristics and decreases glycerophosphate from 60% to 30%. Genipin boosts the mechanical properties of hydrogel without affecting the gel time. Due to their stable microstructure and lower amine availability, genipin-containing materials have a low swelling ratio, around six compared to eight for those without genipin. Hydrogels that are crosslinked degrade about half as fast as those that are not. The slowerr degradation of Silk fibroin compared to chitosan makes it an efficient degradation inhibitor in silk-containing formulations. All of the optimized samples showed less than 5% hemolytic activity, indicating that they lacked hemolytic characteristics. The acceptable cell viability in crosslinked hydrogels ranges from 72% to 91% due to the decreasing total salt concentration, which protects cells from hyperosmolality. The pH of hydrogels and their interstitial pores kept most encapsulated cells alive and functioning for 24 h. Urea levels are higher in the encapsulation condition compared to HepG2 cultivated alone, and this may be due to cell-matrix interactions that boost liver-specific activity. Urea synthesis in genipin crosslinked hydrogels increased dramatically from day 1 (about 4 mg dl-1) to day 3 (approximately 6 mg dl-1), suggesting the enormous potential of these hydrogels for cell milieu preparation. All mentioned findings represent that the optimized system may be a promising candidate for liver regeneration.

7.
Anal Chim Acta ; 1185: 339082, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34711328

RESUMO

Cardiac troponin I (cTnI) is a sensitive biomarker for cardiovascular disease (CVD). Rapid determination of cTnI concentration in blood can greatly reduce the potential of significant heart damage and heart failure. Herein, we demonstrate a new electrochemical immunosensor for selective affinity binding and rapid detection of cTnI in blood plasma by an electrochemical method. A conductive film of "poly 2,5-bis(2-thienyl)3,4-diamine-terthiophene (PDATT)" was deposited onto an Indium Tin Oxide (ITO) electrode using chronoamperometry. Anti-cardiac troponin I antibody was then attached to the two amine (NH2) groups substituted on the central thiophene of terthiophene repeating unit of the polymer chain via amide bond formation. The gaps on the surface of the antibody coated immunosensor were backfilled with bovine serum albumin (BSA) to prevent nonspecific binding of interfering molecules. Differential pulse voltammetry (DPV) was used to determine cTnI upon the formation of cTnI immunocomplex on the sensing surface, appearing a peak at 0.27 V. The response range was 0.01-100 ng mL-1 with limit of quantification down to 0.01 ng mL-1. The developed immunosensor was used to determine cTnI in spiked blood plasma without interference from cardiac troponin T (cTnT). Therefore, this new sensor can be utilised for the detection of cTnI biomarker in pathological laboratories and points of care in less than 15 min.


Assuntos
Técnicas Biossensoriais , Troponina I , Anticorpos Imobilizados , Técnicas Eletroquímicas , Humanos , Imunoensaio , Limite de Detecção , Plasma , Polímeros , Troponina T
8.
Drug Test Anal ; 13(5): 1048-1053, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32311837

RESUMO

In this work, we utilise the disulphide bond structure of insulin and a new benzothiazole Raman probe for the detection of human insulin using surface-enhanced Raman spectroscopy (SERS). The disulphide bond structure of the insulin was reduced to generate free sulfhydryl terminal groups. When reacted with benzothiazole-functionalised gold nanoparticles, the reduced protein desorbs the Raman probe and causes its Raman signal intensity to quench. Using this approach, insulin was quantified in the concentration range of 1 × 10-14 -1 × 10-8 M by SERS quenching. The limit of quantification of insulin by the SERS quenching method was found to be 1 × 10-14 M (0.01 pM or 58 pg/L), which satisfies the requirements for monitoring its blood concentration in patients. Because many proteins and peptides have disulphide bonds in their molecular structures, the new SERS quenching method has a strong potential for the rapid determination of ultralow concentrations of proteins in formulations and biological fluids.


Assuntos
Dissulfetos/sangue , Insulina/sangue , Análise Espectral Raman , Benzotiazóis/química , Dissulfetos/química , Ouro/química , Humanos , Insulina/química , Nanopartículas Metálicas/química , Oxirredução , Conformação Proteica , Reprodutibilidade dos Testes
9.
Analyst ; 145(16): 5508-5515, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32598413

RESUMO

Recombinant human erythropoietin (rHuEPO) is an important hormone drug that is used to treat several medical conditions. It is also frequently abused by athletes as a performance enhancing agent at sporting events. The time window of the rHuEPO in blood is short. Therefore, the rapid detection of rHuEPO use/abuse at points of care and in sports requires a selective analytical method and a sensitive sensor. Herein, we present a highly selective method for the rapid detection of rHuEPO in human blood plasma by a sensitive optical sensor. rHuEPO is selectively extracted from human blood plasma by a target-specific extractor chip and converted into a biothiol by reducing its disulfide bond structure. The formed biothiol reacts with a water soluble (E)-1-((6-methoxybenzo[d]thiazole-2-yl)diazenyl)naphthalene-2,6-diolHg(ii) (BAN-Hg) optical sensor and causes its rapid decomposition. This leads to a rapid change in the sensor color from blue to pink that can be observed by the naked eye. The optical sensor was used to quantify rHuEPO in the concentration range 1 × 10-8 M to 1 × 10-12 M by UV-Vis spectroscopy. For the screening of blood plasma, an EPO-specific extractor chip was synthesized and used to selectively extract the protein from the biological matrix prior to its conversion into biothiol and quantification by the optical sensor. Since many proteins have a disulfide bond structure, the new method has strong potential for their rapid sensitive and selective detection by the BAN-Hg sensor and UV-Vis spectroscopy.


Assuntos
Dopagem Esportivo , Eritropoetina , Preparações Farmacêuticas , Humanos , Plasma , Proteínas Recombinantes
10.
Curr Med Mycol ; 6(3): 21-26, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33834139

RESUMO

BACKGROUND AND PURPOSE: Malassezia yeasts are lipophilic normal flora of the skin in humans and other warm-blooded vertebrates. This genus includes 18 species and is responsible for dermatological disorders, such as pityriasis versicolor, atopic dermatitis, seborrheic dermatitis, folliculitis, and dandruff. The aim of the present study was to identify the etiologic agents of Malassezia infections among the patients referring to the Referral Dermatology Clinic of Al-Zahra Hospital, Isfahan, Iran, during 2018-2019. MATERIALS AND METHODS: For the purpose of the study, clinical specimens, including skin scrapings and dandruff, were collected and subjected to direct microscopy, culture, and polymerase chain reaction (PCR) sequencing. Direct PCR was performed on the clinical samples to amplify the D1/D2 region of 26S rDNA, using specific primers; subsequently, the amplicons were sent for sequencing. RESULTS: This study was conducted on 120 patients with suspected pityriasis versicolor and seborrheic dermatitis, who referred to the Referral Dermatology Clinic of Al-Zahra Hospital, Isfahan, Iran, during 2018-2019. Out of this population, 50 (41.7%), 26 (52%), and 24 (48%) cases had Malassezia infection, pityriasis versicolor, and seborrheic dermatitis, respectively. Malassezia globosa was found to be the most prevalent species (n=29, 58%), followed by M. restricta (n=20, 40%), and M. arunalokei (n=1, 2%). CONCLUSION: The epidemiologic study was indicative of the frequency of some Malassezia species, such as M. globosa and M. restricta, in Isfahan, Iran. It can be concluded that direct PCR on clinical samples could be used as a simple, precise, effective, fast, and affordable method for research and even routine medical mycology laboratory studies.

11.
Analyst ; 144(16): 4908-4916, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31312834

RESUMO

A new benzothiazole azo dye [(E)-1-((6-methoxybenzo[d]thiazole-2-yl)diazenyl)naphthalene-2,6-diol] (also known as "BAN"), has been synthesised and used as a chemosensor for the rapid and selective detection of mercury(ii) ions in water. The pink coloured chemosensor turns blue when reacted with mercury(ii) ions due to the formation of a 2 : 1 coordination complex. The complex formation causes a bathochromic shift of the chemosensor's UV absorption peak from 540 to 585 nm and turns on a highly selective fluorescence emission at 425 nm. The change in the optical property of BAN upon complexation with mercury(ii) was confirmed by ab initio calculations. The new chemosensor was used to quantify mercury(ii) ions in water by fluorescence spectroscopy down to 5 × 10-8 M (10 ppb). The limit of detection (LOD) of Hg2+ was 9.45 nM (1.8 ppb) which satisfies the maximum allowable Hg2+ concentration in drinking water that is set by the WHO. The BAN-Hg(ii) complex was used for the determination of cysteine (Cys) in aqueous solution by UV-Vis spectroscopy down to 1 × 10-7 M. The thiol-containing amino acid preferentially coordinates the mercury ions of the BAN-Hg(ii) complex. This causes dissociation of the blue-coloured complex and the liberation of the pink-coloured BAN dye. The colour change of the BAN-Hg(ii) complex from blue to pink was selective to the Cys biothiol while other non-thiol containing amino acids did not cause a colour change. For the in-field application, filter paper strips were loaded with the BAN-Hg(ii) complex and used as a disposable sensor for the detection of cysteine (Cys) by the naked eye. Therefore, the BAN chemosensor offers a sensitive, and rapid tool for the detection of mercury(ii) in water. In addition, the BAN-Hg(ii) complex can be used as a simple and selective chemosensor of the screening of purified biothiols, such cysetine, homocysteine and glutathione in biology research and pharmaceutical/food industries.


Assuntos
Benzotiazóis/síntese química , Corantes Fluorescentes/síntese química , Mercúrio/análise , Compostos de Sulfidrila/análise , Poluentes Químicos da Água/análise , Cátions Bivalentes , Cor , Simulação por Computador , Complexos de Coordenação/química , Cisteína/análise , Teoria da Densidade Funcional , Glutationa/análise , Concentração de Íons de Hidrogênio , Ligantes , Limite de Detecção , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA