Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1316: 342861, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38969410

RESUMO

BACKGROUND: The high toxicity of hexavalent chromium [Cr (VI)] could not only cause harmful effects on humans, including carcinogenicity, respiratory issues, genetic damage, and skin irritation, but also contaminate drinking water sources, aquatic ecosystems, and soil, impairing the reproductive capacity, growth, and survival of organisms. Due to these harmful effects, detecting toxic Cr (VI) is of great significance. However, the rapid, simple, and efficient detection at a low Cr (VI) concentration is extremely challenging, especially in an acidic condition (existing as HCrO4-) due to its low adsorption free energy. RESULTS: A diketopyrrolopyrrole-based small molecule (DPPT-PhSMe) is designed and characterized to act as a chemosensor, which allows a high selectivity to Cr (VI) at an acidic condition with a low limit of detection to 10-8 M that is two orders of magnitude lower than the cut of limit (1 µM) recommended by World Health Organization (WHO). Mechanism study indicates that the rich sulfur atoms enhance the affinity to HCrO4-. Combining with favorable features of diketopyrrolopyrrole, DPPT-PhSMe not only allows dual-mode detection (colorimetric and spectroscopic) to Cr (VI), but also enables disposable paper-based sensor for naked-eye detection to Cr (VI) from fully aqueous media. The investigation of DPPT-PhSMe chemosensor for the quantification of Cr (VI) in real life samples demonstrates a high reliability and accuracy with an average percentage recovery of 102.1 % ± 4 (n = 3). SIGNIFICANCE: DPPT-PhSMe represents the first diketopyrrolopyrrole-derived chemosensor for efficient detection to toxic Cr (VI), not only providing a targeted solution to the bottleneck of Cr (VI) detection in acidic conditions (existing as HCrO4-) caused by its low adsorption free energy, but also opening a new scenario for simple, selective, and efficient Cr (VI) detection with conjugated dye molecules.


Assuntos
Cromo , Limite de Detecção , Pirróis , Poluentes Químicos da Água , Cromo/análise , Pirróis/química , Poluentes Químicos da Água/análise , Cetonas/química , Cetonas/análise , Água/química
2.
SLAS Discov ; 27(6): 331-336, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35667647

RESUMO

Current methods for the screening of viral infections in clinical settings, such as reverse transcription polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA), are expensive, time-consuming, require trained personnel and sophisticated instruments. Therefore, novel sensors that can save time and cost are required specially in remote areas and developing countries that may lack the advanced scientific infrastructure for this task. In this work, we present a sensitive, and highly specific biosensing approach for the detection of harmful viruses that have cysteine residues within the structure of their cell surface proteins. We utilized new method for the rapid screening of SARS-CoV-2 virus in biological fluids through its S1 protein by surface enhanced Raman spectroscopy (SERS). The protein is captured from aqueous solutions and biological specimens using a target-specific extractor substrate. The structure of the purified protein is then modified to convert it into a bio-thiol by breaking the disulfide bonds and freeing up the sulfhydryl (SH) groups of the cysteine residues. The formed biothiol chemisorbs favourably onto a highly sensitive plasmonic sensor and probed by a handheld Raman device in few seconds. The new method was used to screen the S1 protein in aqueous medium, spiked human blood plasma, mucus, and saliva samples down to 150 fg/L. The label-free SERS biosensing method has strong potential for the fingerprint identification many viruses (e.g. the human immunodeficiency virus, the human polyomavirus, the human papilloma virus, the adeno associated viruses, the enteroviruses) through the cysteine residues of their capsid proteins. The new method can be applied at points of care (POC) in remote areas and developing countries lacking sophisticated scientific infrastructure.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Cisteína , Ouro/química , Humanos , Limite de Detecção , Proteínas de Membrana
3.
Talanta ; 248: 123630, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35660992

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a serious threat to human health. Current methods such as reverse transcription polymerase chain reaction (qRT-PCR) are complex, expensive, and time-consuming. Rapid, and simple screening methods for the detection of SARS-CoV-2 are critically required to fight the current pandemic. In this work we present a proof of concept for, a simple optical sensing method for the screening of SARS-CoV-2 through its spike protein subunit S1. The method utilizes a target-specific extractor chip to bind the protein from the biological specimens. The disulfide bonds of the protein are then reduced into a biothiol with sulfhydryl (SH) groups that react with a blue-colored benzothiazole azo dye-Hg complex (BAN-Hg) and causes the spontaneous change of its blue color to pink which is observable by the naked eye. A linear relationship between the intensity of the pink color and the logarithm of reduced S1 protein concentration was found within the working range 130 ng.mL-1-1.3 pg mL-1. The lowest limit of detection (LOD) of the assay was 130 fg mL-1. A paper based optical sensor was fabricated by loading the BAN-Hg sensor onto filter paper and used to screen the S1 protein in spiked saliva and patients' nasopharyngeal swabs. The results obtained by the paper sensor corroborated with those obtained by qRT-PCR. The new paper-based sensing method can be extended to the screening of many viruses (e.g. the human immunodeficiency virus, the human polyomavirus, the human papilloma virus, the adeno associated viruses, the enteroviruses) through the cysteine residues of their capsid proteins. The new method has strong potential for screening viruses at pathology labs and in remote areas that lacks advanced scientific infrastructure. Further clinical studies are warranted to validate the new sensing method.


Assuntos
COVID-19 , Mercúrio , COVID-19/diagnóstico , Cisteína , Humanos , Proteínas de Membrana , SARS-CoV-2/genética
4.
Anal Chim Acta ; 1185: 339082, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34711328

RESUMO

Cardiac troponin I (cTnI) is a sensitive biomarker for cardiovascular disease (CVD). Rapid determination of cTnI concentration in blood can greatly reduce the potential of significant heart damage and heart failure. Herein, we demonstrate a new electrochemical immunosensor for selective affinity binding and rapid detection of cTnI in blood plasma by an electrochemical method. A conductive film of "poly 2,5-bis(2-thienyl)3,4-diamine-terthiophene (PDATT)" was deposited onto an Indium Tin Oxide (ITO) electrode using chronoamperometry. Anti-cardiac troponin I antibody was then attached to the two amine (NH2) groups substituted on the central thiophene of terthiophene repeating unit of the polymer chain via amide bond formation. The gaps on the surface of the antibody coated immunosensor were backfilled with bovine serum albumin (BSA) to prevent nonspecific binding of interfering molecules. Differential pulse voltammetry (DPV) was used to determine cTnI upon the formation of cTnI immunocomplex on the sensing surface, appearing a peak at 0.27 V. The response range was 0.01-100 ng mL-1 with limit of quantification down to 0.01 ng mL-1. The developed immunosensor was used to determine cTnI in spiked blood plasma without interference from cardiac troponin T (cTnT). Therefore, this new sensor can be utilised for the detection of cTnI biomarker in pathological laboratories and points of care in less than 15 min.


Assuntos
Técnicas Biossensoriais , Troponina I , Anticorpos Imobilizados , Técnicas Eletroquímicas , Humanos , Imunoensaio , Limite de Detecção , Plasma , Polímeros , Troponina T
5.
Drug Test Anal ; 13(5): 1048-1053, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32311837

RESUMO

In this work, we utilise the disulphide bond structure of insulin and a new benzothiazole Raman probe for the detection of human insulin using surface-enhanced Raman spectroscopy (SERS). The disulphide bond structure of the insulin was reduced to generate free sulfhydryl terminal groups. When reacted with benzothiazole-functionalised gold nanoparticles, the reduced protein desorbs the Raman probe and causes its Raman signal intensity to quench. Using this approach, insulin was quantified in the concentration range of 1 × 10-14 -1 × 10-8 M by SERS quenching. The limit of quantification of insulin by the SERS quenching method was found to be 1 × 10-14 M (0.01 pM or 58 pg/L), which satisfies the requirements for monitoring its blood concentration in patients. Because many proteins and peptides have disulphide bonds in their molecular structures, the new SERS quenching method has a strong potential for the rapid determination of ultralow concentrations of proteins in formulations and biological fluids.


Assuntos
Dissulfetos/sangue , Insulina/sangue , Análise Espectral Raman , Benzotiazóis/química , Dissulfetos/química , Ouro/química , Humanos , Insulina/química , Nanopartículas Metálicas/química , Oxirredução , Conformação Proteica , Reprodutibilidade dos Testes
6.
Analyst ; 145(16): 5508-5515, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32598413

RESUMO

Recombinant human erythropoietin (rHuEPO) is an important hormone drug that is used to treat several medical conditions. It is also frequently abused by athletes as a performance enhancing agent at sporting events. The time window of the rHuEPO in blood is short. Therefore, the rapid detection of rHuEPO use/abuse at points of care and in sports requires a selective analytical method and a sensitive sensor. Herein, we present a highly selective method for the rapid detection of rHuEPO in human blood plasma by a sensitive optical sensor. rHuEPO is selectively extracted from human blood plasma by a target-specific extractor chip and converted into a biothiol by reducing its disulfide bond structure. The formed biothiol reacts with a water soluble (E)-1-((6-methoxybenzo[d]thiazole-2-yl)diazenyl)naphthalene-2,6-diolHg(ii) (BAN-Hg) optical sensor and causes its rapid decomposition. This leads to a rapid change in the sensor color from blue to pink that can be observed by the naked eye. The optical sensor was used to quantify rHuEPO in the concentration range 1 × 10-8 M to 1 × 10-12 M by UV-Vis spectroscopy. For the screening of blood plasma, an EPO-specific extractor chip was synthesized and used to selectively extract the protein from the biological matrix prior to its conversion into biothiol and quantification by the optical sensor. Since many proteins have a disulfide bond structure, the new method has strong potential for their rapid sensitive and selective detection by the BAN-Hg sensor and UV-Vis spectroscopy.


Assuntos
Dopagem Esportivo , Eritropoetina , Preparações Farmacêuticas , Humanos , Plasma , Proteínas Recombinantes
7.
Analyst ; 144(16): 4908-4916, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31312834

RESUMO

A new benzothiazole azo dye [(E)-1-((6-methoxybenzo[d]thiazole-2-yl)diazenyl)naphthalene-2,6-diol] (also known as "BAN"), has been synthesised and used as a chemosensor for the rapid and selective detection of mercury(ii) ions in water. The pink coloured chemosensor turns blue when reacted with mercury(ii) ions due to the formation of a 2 : 1 coordination complex. The complex formation causes a bathochromic shift of the chemosensor's UV absorption peak from 540 to 585 nm and turns on a highly selective fluorescence emission at 425 nm. The change in the optical property of BAN upon complexation with mercury(ii) was confirmed by ab initio calculations. The new chemosensor was used to quantify mercury(ii) ions in water by fluorescence spectroscopy down to 5 × 10-8 M (10 ppb). The limit of detection (LOD) of Hg2+ was 9.45 nM (1.8 ppb) which satisfies the maximum allowable Hg2+ concentration in drinking water that is set by the WHO. The BAN-Hg(ii) complex was used for the determination of cysteine (Cys) in aqueous solution by UV-Vis spectroscopy down to 1 × 10-7 M. The thiol-containing amino acid preferentially coordinates the mercury ions of the BAN-Hg(ii) complex. This causes dissociation of the blue-coloured complex and the liberation of the pink-coloured BAN dye. The colour change of the BAN-Hg(ii) complex from blue to pink was selective to the Cys biothiol while other non-thiol containing amino acids did not cause a colour change. For the in-field application, filter paper strips were loaded with the BAN-Hg(ii) complex and used as a disposable sensor for the detection of cysteine (Cys) by the naked eye. Therefore, the BAN chemosensor offers a sensitive, and rapid tool for the detection of mercury(ii) in water. In addition, the BAN-Hg(ii) complex can be used as a simple and selective chemosensor of the screening of purified biothiols, such cysetine, homocysteine and glutathione in biology research and pharmaceutical/food industries.


Assuntos
Benzotiazóis/síntese química , Corantes Fluorescentes/síntese química , Mercúrio/análise , Compostos de Sulfidrila/análise , Poluentes Químicos da Água/análise , Cátions Bivalentes , Cor , Simulação por Computador , Complexos de Coordenação/química , Cisteína/análise , Teoria da Densidade Funcional , Glutationa/análise , Concentração de Íons de Hidrogênio , Ligantes , Limite de Detecção , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA