Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Bioconjug Chem ; 34(12): 2319-2336, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38085066

RESUMO

Systemic delivery of therapeutics into the brain is greatly impaired by multiple biological barriers─the blood-brain barrier (BBB) and the extracellular matrix (ECM) of the extracellular space. To address this problem, we developed a combinatorial approach to identify peptides that can shuttle and transport across both barriers. A cysteine-constrained heptapeptide M13 phage display library was iteratively panned against an established BBB model for three rounds to select for peptides that can transport across the barrier. Using next-generation DNA sequencing and in silico analysis, we identified peptides that were selectively enriched from successive rounds of panning for functional validation in vitro and in vivo. Select peptide-presenting phages exhibited efficient shuttling across the in vitro BBB model. Two clones, Pep-3 and Pep-9, exhibited higher specificity and efficiency of transcytosis than controls. We confirmed that peptides Pep-3 and Pep-9 demonstrated better diffusive transport through the extracellular matrix than gold standard nona-arginine and clinically trialed angiopep-2 peptides. In in vivo studies, we demonstrated that systemically administered Pep-3 and Pep-9 peptide-presenting phages penetrate the BBB and distribute into the brain parenchyma. In addition, free peptides Pep-3 and Pep-9 achieved higher accumulation in the brain than free angiopep-2 and may exhibit brain targeting. In summary, these in vitro and in vivo studies highlight that combinatorial phage display with a designed selection strategy can identify peptides as promising carriers, which are able to overcome the multiple biological barriers of the brain and shuttle different-sized molecules from small fluorophores to large macromolecules for improved delivery into the brain.


Assuntos
Barreira Hematoencefálica , Encéfalo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Peptídeos/química , Transporte Biológico , Técnicas de Visualização da Superfície Celular
2.
Bioeng Transl Med ; 8(6): e10580, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38023707

RESUMO

Although mRNA lipid nanoparticles (LNPs) are highly effective as vaccines, their efficacy for pulmonary delivery has not yet fully been established. A major barrier to this therapeutic goal is their instability during aerosolization for local delivery. This imparts a shear force that degrades the mRNA cargo and therefore reduces cell transfection. In addition to remaining stable upon aerosolization, mRNA LNPs must also possess the aerodynamic properties to achieve deposition in clinically relevant areas of the lungs. We addressed these challenges by formulating mRNA LNPs with SM-102, the clinically approved ionizable lipid in the Spikevax COVID-19 vaccine. Our lead candidate, B-1, had the highest mRNA expression in both a physiologically relevant air-liquid interface (ALI) human lung cell model and in healthy mice lungs upon aerosolization. Further, B-1 showed selective transfection in vivo of lung epithelial cells compared to immune cells and endothelial cells. These results show that the formulation can target therapeutically relevant cells in pulmonary diseases such as cystic fibrosis. Morphological studies of B-1 revealed differences in the surface structure compared to LNPs with lower transfection efficiency. Importantly, the formulation maintained critical aerodynamic properties in simulated human airways upon next generation impaction. Finally, structure-function analysis of SM-102 revealed that small changes in the number of carbons can improve upon mRNA delivery in ALI human lung cells. Overall, our study expands the application of SM-102 and its analogs to aerosolized pulmonary delivery and identifies a potent lead candidate for future therapeutically active mRNA therapies.

3.
Adv Drug Deliv Rev ; 197: 114825, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37075953

RESUMO

Bioengineering of bacteria-related microbes has demonstrated a great potential in targeted cancer therapy. Presently, the major administration routes of bacteria-related microbes for cancer treatment include intravenous injection, intratumoral injection, intraperitoneal injection, and oral delivery. Routes of bacteria administration are critical since different delivery approaches might exert anticancer effects through diverse mechanisms. Herein, we provide an overview of the primary routes of bacteria administration as well as their advantages and limitations. Furthermore, we discuss that microencapsulation can overcome some of the associated challenges with the administration of free bacteria. We also review the latest advancements in combining functional particles with engineered bacteria to fight cancer, which can be coupled with conventional therapies to improve therapeutic effects. Moreover, we highlight the application prospect of emerging 3D bioprinting in cancer bacteriotherapy, which represents a new paradigm for personalized cancer treatment. Eventually, we provide insights into regulatory expectations and concerns regarding this field for the future translation from bench to clinic.


Assuntos
Bioimpressão , Neoplasias , Humanos , Preparações Farmacêuticas , Neoplasias/tratamento farmacológico , Neoplasias/microbiologia , Bactérias , Bioengenharia
4.
Pharm Res ; 38(10): 1793-1804, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34697726

RESUMO

PURPOSE: Bacteriophage (phage) therapy has re-gained attention lately given the ever-increasing prevalence of multi-drug resistance 'super-bugs'. To develop therapeutic phage into clinically usable drug products, the strategy of solidifying phage formulations has been implemented to diversify the dosage forms and to overcome the storage condition limitations for liquid phage formulations. METHOD: In our work, we hypothesize and tested that an advanced technology, thin film freeze-drying (TFFD), can be used to produce phage containing dry powders without significantly losing phage viability. Here we selected T7 phage as our model phage in a preliminary screening study. RESULTS: We found that a binary excipient matrix of sucrose and leucine at ratios of 90:10 or 75:25 by weight, protected phage from the stresses encountered during the TFFD process. In addition, we confirmed that incorporating a buffer system in the formulation significantly improved the survival of phage during the initial freezing step and subsequent sublimation step in the solidifying processes. The titer loss of phage in SM buffer (Tris/NaCl/MgSO4) containing formulation was as low as 0.19 log plaque forming units, which indicated that phage function was well preserved after the TFFD process. The presence of buffers markedly reduced the geometric particle sizes as determined by a dry dispersion method using laser diffraction, which indicated that the TFFD phage powder formulations were easily sheared into smaller powder aggregates, an ideal property for facilitating a variety of topical drug delivery routes including pulmonary delivery through dry powder inhalers, nebulization after reconstitution, and intranasal or wound therapy, etc. CONCLUSION: From these findings, we show that introducing buffer system can stabilize phage during dehydration processes, and TFFD, as a novel particle engineering method, can successfully produce phage containing powders that possess the desired properties for bioactivity and potentially for inhalation therapy.


Assuntos
Bacteriófagos/química , Excipientes/química , Pós/farmacologia , Administração por Inalação , Composição de Medicamentos , Liberação Controlada de Fármacos , Inaladores de Pó Seco , Liofilização , Humanos , Pulmão , Tamanho da Partícula
5.
Int J Pharm ; 596: 120215, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33486021

RESUMO

Lipid nanoparticles are increasingly used for drug and gene delivery, including the delivery of small interfering RNA (siRNA). Pulmonary delivery of drug molecules carried by lipid nanoparticles directly into the lung may improve the treatment of certain lung diseases. The present study was designed to test the feasibility of engineering aerosolizable dry powder of lipid nanoparticles by thin-film freeze-drying (TFFD). Solid lipid nanoparticles (SLNs) comprised of lecithin, cholesterol, and a lipid-polyethylene glycol conjugate were prepared by solvent evaporation. Dry powders of the SLNs were prepared by TFFD, spray drying, or conventional shelf freeze-drying. The physical and aerosol properties of the dry powders as well as the physical properties of the SLNs reconstituted from the dry powders were evaluated. The particle size, polydispersity index, and the zeta potential of the SLNs were preserved after they were subjected to TFFD and reconstitution, but not after they were subjected to conventional shelf freeze-drying and reconstitution, and the dry powder prepared by TFFD showed better aerosol performance properties than that prepared by spray drying. SLNs encapsulated with siRNA can also be successfully transformed into aerosolizable dry powder by TFFD, and subjecting the siRNA-encapsulated SLNs to TFFD did not negatively affect the function of the siRNA. It is concluded that TFFD represents a promising method to prepare aerosolizable dry powder of lipid nanoparticles.


Assuntos
Nanopartículas , Administração por Inalação , Liofilização , Lipídeos , Pulmão , Tamanho da Partícula , Pós , RNA Interferente Pequeno
6.
Pharmaceutics ; 12(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143328

RESUMO

Messenger RNA is a class of promising nucleic acid therapeutics to treat a variety of diseases, including genetic diseases. The development of a stable and efficacious mRNA pulmonary delivery system would enable high therapeutic concentrations locally in the lungs to improve efficacy and limit potential toxicities. In this study, we employed a Design of Experiments (DOE) strategy to screen a library of lipid nanoparticle compositions to identify formulations possessing high potency both before and after aerosolization. Lipid nanoparticles (LNPs) showed stable physicochemical properties for at least 14 days of storage at 4 °C, and most formulations exhibited high encapsulation efficiencies greater than 80%. Generally, upon nebulization, LNP formulations showed increased particle size and decreased encapsulation efficiencies. An increasing molar ratio of poly-(ethylene) glycol (PEG)-lipid significantly decreased size but also intracellular protein expression of mRNA. We identified four formulations possessing higher intracellular protein expression ability in vitro even after aerosolization which were then assessed in in vivo studies. It was found that luciferase protein was predominately expressed in the mouse lung for the four lead formulations before and after nebulization. This study demonstrated that LNPs hold promise to be applied for aerosolization-mediated pulmonary mRNA delivery.

7.
J Control Release ; 328: 1-12, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32798638

RESUMO

To harness the intrinsic transport properties of albumin yet improve the therapeutic index of current in situ albumin-binding prodrugs, we developed albumin-drug conjugates with a controlled loading that achieved better antitumor efficacy. Here, model drug monomethyl auristatin E (MMAE) was conjugated ex vivo to Cys34 of albumin via a cathepsin B-sensitive dipeptide linker to ensure that all drug would be bound specifically to albumin. The resulting albumin-drug conjugate with a drug to albumin ratio (DAR) of 1 (ALDC1) retained the native secondary structure of albumin compared to conjugate with a higher DAR of 3 (ALDC3). ALDC1 exhibited improved drug release and cytotoxicity compared to ALDC3 in vitro. Slower plasma clearance and increased drug exposure over time of ALDC1 were observed compared to ALDC3 and MMAE prodrug. In single dose studies with MIA PaCa2 xenografts, cohorts treated with ALDC1 had the highest amount of MMAE drug in tumor tissues compared to other treatment arms. After multiple dosing, ALDC1 significantly delayed the tumor growth compared to control treatment arms MMAE, MMAE-linker conjugate and ALDC3. When dosed with the maximum tolerated dose of ALDC1, there was complete eradication of 83.33% of the tumors in the treatment group. Ex vivo conjugated ALDC1 also significantly inhibited tumor growth in an immunocompetent syngeneic mouse model that better recapitulates the phenotype and clinical features of human pancreatic cancers. In summary, site-specific loading of drug to albumin at 1:1 ratio allowed the conjugate to better maintain the native structure of albumin and its intrinsic properties. By conjugating the drug to albumin prior to administration minimized premature cleavage and instability of the drug in plasma and enabled higher drug accumulation in tumors compared to in situ albumin-binding prodrugs. This strategy to control drug loading ex vivo ensures complete drug binding to the albumin carrier and achieves excellent antitumor efficacy, and it has the potential to greatly improve the outcomes of anticancer therapy.


Assuntos
Sistemas de Liberação de Medicamentos , Imunoconjugados , Neoplasias Pancreáticas , Albuminas , Animais , Linhagem Celular Tumoral , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Int J Pharm ; 587: 119491, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32622810

RESUMO

How prevalent are peptide therapeutic products? How innovative are the formulations used to deliver peptides? This review provides a critical analysis of therapeutic peptide products and the formulations approved by the United States Food and Drug administration (FDA), the European Medicines Agency (EMA), and the Japanese Pharmaceuticals and Medical Devices Agency (PMDA). This review also provides an in-depth analysis of dosage forms and administration routes for delivering peptide therapeutics, including injectables, oral dosage forms, and other routes of administration. We discuss the function of excipients in parenteral formulations in detail, since most peptide therapeutics are parenterally administered. We provide case studies of alternate delivery routes and dosage forms. Based on our analysis, therapeutic peptides administered as injectables remain the most commonly used dosage forms, particularly in the form of subcutaneous, intravenous, or intramuscular injections. In addition, therapeutic peptides are formulated to achieve prolonged release, often through the use of polymer carriers. The limited number of oral therapeutic peptide products and their poor absorption and subsequent low bioavailability indicate a need for new technologies to broaden the formulation design space. Therapeutic peptide products may also be delivered through other administration routes, including intranasal, implant, and sublingual routes. Therefore, an in-depth understanding of how therapeutic peptides are now formulated and administered is essential to improve peptide delivery, improve patient compliance, and reduce the healthcare burden for these crucial therapeutic agents.


Assuntos
Sistemas de Liberação de Medicamentos , Peptídeos , Administração Intranasal , Administração Oral , Excipientes , Humanos , Estados Unidos
9.
Acta Biomater ; 113: 240-251, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32428687

RESUMO

Drug carriers achieve poor and heterogeneous distribution within solid tumors due to limited transport through the tumor extracellular matrix (ECM). The tumor ECM forms a net negatively charged network that interacts with and hinders the transport of molecules in part due to electrostatic interactions. Traditionally, the surfaces of drug delivery systems are passivated to minimize these interactions, but the mechanism of how charge interactions impact transport and penetration within the tumor microenvironment (TME) is not well understood. Here, we used T7 bacteriophage as a model biological nanoparticle to display peptides of different charges on its surface and elucidate how charge-based binding drives transport, uptake, and retention within tumor tissue. In contrast to current studies with neutrally charged surfaces, we discovered that a positively charged peptide displayed on T7 enhanced its penetration through a tumor-like ECM when compared to neutrally and negatively charged peptides. The positively charged peptide displayed on T7 facilitated weak and reversible binding with the TME to achieve Donnan partitioning and deep penetration into ex vivo tumor tissue. Additionally, the positively charged peptide-presenting T7 has a high number of intra-tissue binding sites in the TME (~4 µM) that enables almost 100% retention in the tumor tissue for up to 24 h. These results, coupled with transport studies of systematically mutated T7, show that electrostatic interactions can be responsible for uptake and retention of the positively charged peptide-presenting T7 within the net negatively charged TME. STATEMENT OF SIGNIFICANCE: The TME selectively hinders the transport of drugs and drug delivery systems due to their size, shape, and intermolecular interactions. Typically, the focus in drug delivery has been to develop delivery systems smaller than the pore size of the tumor ECM and/or develop inert surface coatings that have negligible interactions with the tumor ECM for diffusive transport. While there is an association of the surface charge of carriers with their transport through the tumor ECM, the mechanism of charge-driven transport is poorly understood. In this work, we elucidate the mechanism and find that interestingly, particles with a weakly positive surface charge interact with the net negatively charged tumor ECM to significantly improve their uptake, penetration, and retention in tumor tissue.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias , Peptídeos , Matriz Extracelular , Humanos , Eletricidade Estática , Microambiente Tumoral
10.
AAPS PharmSciTech ; 21(4): 133, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415395

RESUMO

Phage therapy has gained prominence due to the increasing pathogenicity of "super bugs" and the rise of their multidrug resistance to conventional antibiotics. Dry state formulation of therapeutic phage is attractive to improve their "druggability" by increasing their shelf life, improving their ease of handling, and ultimately retaining their long-term potency. The use and selection of excipients are critical to stabilize phage in solid formulations and protect their viability from stresses encountered during the solidification process and long-term storage prior to use. Here, this review focuses on the current classes of excipients used to manufacture dry state phage formulations and their ability to stabilize and protect phage throughout the process, as discussed in the literature. We provide perspective of outstanding challenges involved in the formulation of dry state phage. We suggest strategies to improve excipient identification and selection, optimize the potential excipient combinations to improve phage viability during formulation, and evaluate new methodologies that can provide greater insight into phage-excipient interactions to improve design criteria to improve formulation of dry state phage therapeutics. Addressing these challenges opens up new opportunities to re-design and re-imagine phage formulations for improved efficacy as a pharmaceutical product.


Assuntos
Bacteriófagos/química , Produtos Biológicos/química , Composição de Medicamentos/métodos , Excipientes/química , Animais , Produtos Biológicos/administração & dosagem , Estabilidade de Medicamentos , Excipientes/administração & dosagem , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA