Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1921, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429327

RESUMO

Rising temperatures are leading to increased prevalence of warm-affinity species in ecosystems, known as thermophilisation. However, factors influencing variation in thermophilisation rates among taxa and ecosystems, particularly freshwater communities with high diversity and high population decline, remain unclear. We analysed compositional change over time in 7123 freshwater and 6201 terrestrial, mostly temperate communities from multiple taxonomic groups. Overall, temperature change was positively linked to thermophilisation in both realms. Extirpated species had lower thermal affinities in terrestrial communities but higher affinities in freshwater communities compared to those persisting over time. Temperature change's impact on thermophilisation varied with community body size, thermal niche breadth, species richness and baseline temperature; these interactive effects were idiosyncratic in the direction and magnitude of their impacts on thermophilisation, both across realms and taxonomic groups. While our findings emphasise the challenges in predicting the consequences of temperature change across communities, conservation strategies should consider these variable responses when attempting to mitigate climate-induced biodiversity loss.


Assuntos
Biodiversidade , Ecossistema , Animais , Tamanho Corporal , Clima , Água Doce
2.
Ecol Lett ; 26(2): 203-218, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36560926

RESUMO

Human impacts such as habitat loss, climate change and biological invasions are radically altering biodiversity, with greater effects projected into the future. Evidence suggests human impacts may differ substantially between terrestrial and freshwater ecosystems, but the reasons for these differences are poorly understood. We propose an integrative approach to explain these differences by linking impacts to four fundamental processes that structure communities: dispersal, speciation, species-level selection and ecological drift. Our goal is to provide process-based insights into why human impacts, and responses to impacts, may differ across ecosystem types using a mechanistic, eco-evolutionary comparative framework. To enable these insights, we review and synthesise (i) how the four processes influence diversity and dynamics in terrestrial versus freshwater communities, specifically whether the relative importance of each process differs among ecosystems, and (ii) the pathways by which human impacts can produce divergent responses across ecosystems, due to differences in the strength of processes among ecosystems we identify. Finally, we highlight research gaps and next steps, and discuss how this approach can provide new insights for conservation. By focusing on the processes that shape diversity in communities, we aim to mechanistically link human impacts to ongoing and future changes in ecosystems.


Assuntos
Efeitos Antropogênicos , Ecossistema , Humanos , Biodiversidade , Água Doce , Evolução Biológica , Mudança Climática
3.
Am Nat ; 199(4): 468-479, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35324376

RESUMO

AbstractFunctionally variable symbionts commonly co-occur including within the roots of individual plants, in spite of arguments from simple models of the stability of mutualism that predict competitive exclusion among symbionts. We explore this paradox by evaluating the dynamics generated by symbiont competition for plant resources and the plant's preferential allocation to the most beneficial symbiont using a system of differential equations representing the densities of mutualistic and nonmutualistic symbionts and the level of preferentially allocated and nonpreferentially allocated resources for which the symbionts compete. We find that host preferential allocation and costs of mutualism generate resource specialization that makes the coexistence of beneficial and nonbeneficial symbionts possible. Furthermore, coexistence becomes likely because of negative physiological feedbacks in host preferential allocation. We find that biologically realistic models of plant physiology and symbiont competition predict that the coexistence of beneficial and nonbeneficial symbionts should be common in root symbioses and that the density and relative abundance of mutualists should increase in proportion to the needs of the host.


Assuntos
Plantas , Simbiose , Simbiose/fisiologia
4.
Philos Trans R Soc Lond B Biol Sci ; 376(1835): 20200343, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34420392

RESUMO

Synchrony among population fluctuations of multiple coexisting species has a major impact on community stability, i.e. on the relative temporal constancy of aggregate properties such as total community biomass. However, synchrony and its impacts are usually measured using covariance methods, which do not account for whether species abundances may be more correlated when species are relatively common than when they are scarce, or vice versa. Recent work showed that species commonly exhibit such 'asymmetric tail associations'. We here consider the influence of asymmetric tail associations on community stability. We develop a 'skewness ratio' which quantifies how much species relationships and tail associations modify stability. The skewness ratio complements the classic variance ratio and related metrics. Using multi-decadal grassland datasets, we show that accounting for tail associations gives new viewpoints on synchrony and stability; e.g. species associations can alter community stability differentially for community crashes or explosions to high values, a fact not previously detectable. Species associations can mitigate explosions of community abundance to high values, increasing one aspect of stability, while simultaneously exacerbating crashes to low values, decreasing another aspect of stability; or vice versa. Our work initiates a new, more flexible paradigm for exploring species relationships and community stability. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.


Assuntos
Biodiversidade , Biomassa , Ecossistema , Periodicidade , Ecologia , Dinâmica Populacional
5.
Ecol Evol ; 10(23): 12764-12776, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33304492

RESUMO

Standard methods for studying the association between two ecologically important variables provide only a small slice of the information content of the association, but statistical approaches are available that provide comprehensive information. In particular, available approaches can reveal tail associations, that is, accentuated or reduced associations between the more extreme values of variables. We here study the nature and causes of tail associations between phenological or population-density variables of co-located species, and their ecological importance. We employ a simple method of measuring tail associations which we call the partial Spearman correlation. Using multidecadal, multi-species spatiotemporal datasets on aphid first flights and marine phytoplankton population densities, we assess the potential for tail association to illuminate two major topics of study in community ecology: the stability or instability of aggregate community measures such as total community biomass and its relationship with the synchronous or compensatory dynamics of the community's constituent species; and the potential for fluctuations and trends in species phenology to result in trophic mismatches. We find that positively associated fluctuations in the population densities of co-located species commonly show asymmetric tail associations; that is, it is common for two species' densities to be more correlated when large than when small, or vice versa. Ordinary measures of association such as correlation do not take this asymmetry into account. Likewise, positively associated fluctuations in the phenology of co-located species also commonly show asymmetric tail associations. We provide evidence that tail associations between two or more species' population-density or phenology time series can be inherited from mutual tail associations of these quantities with an environmental driver. We argue that our understanding of community dynamics and stability, and of phenologies of interacting species, can be meaningfully improved in future work by taking into account tail associations.

6.
Phys Rev E ; 97(4-1): 042125, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29758662

RESUMO

We consider the Brownian motion of a collection of particles each with an additional degree of freedom. The degree of freedom of a particle (or, in general, a molecule) can assume distinct values corresponding to certain states or conformations. The time evolution of the additional degree of freedom of a particle is guided by those of its neighbors as well as the temperature of the system. We show that the local averaging over these degrees of freedom results in emergence of a collective order in the dynamics in the form of selection or dominance of one of the isomers leading to a symmetry-broken state. Our statistical model captures the basic features of homochirality, e.g., autocatalysis and chiral inhibition.

7.
Phys Rev E ; 97(2-1): 022213, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29548232

RESUMO

We consider a reaction-diffusion system with linear, stochastic activator-inhibitor kinetics where the time evolution of concentration of a species at any spatial location depends on the relative average concentration of its neighbors. This self-regulating nature of kinetics brings in spatial correlation between the activator and the inhibitor. An interplay of this correlation in kinetics and disparity of diffusivities of the two species leads to symmetry breaking non-equilibrium transition resulting in stationary pattern formation. The role of initial noise strength and the linear reaction terms has been analyzed for pattern selection.

8.
Phys Rev E ; 94(4-1): 042223, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27841603

RESUMO

We have analyzed the differential flow-induced instability in the presence of diffusive transport in a reaction-diffusion system following activator-inhibitor kinetics. The conspicuous interaction of differential flow and differential diffusivity that leads to pattern selection during transition of the traveling waves from stripes to rotating spots propagating in hexagonal arrays subsequent to wave splitting has been explored on the basis of a few-mode Galerkin scheme.

9.
Phys Rev E ; 93(3): 032209, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27078346

RESUMO

We consider a reaction-diffusion system in a homogeneous stable steady state. On perturbation by a time-dependent sinusoidal forcing of a suitable scaling parameter the system exhibits parametric spatiotemporal instability beyond a critical threshold frequency. We have formulated a general scheme to calculate the threshold condition for oscillation and the range of unstable spatial modes lying within a V-shaped region reminiscent of Arnold's tongue. Full numerical simulations show that depending on the specificity of nonlinearity of the models, the instability may result in time-periodic stationary patterns in the form of standing clusters or spatially localized breathing patterns with characteristic wavelengths. Our theoretical analysis of the parametric oscillation in reaction-diffusion system is corroborated by full numerical simulation of two well-known chemical dynamical models: chlorite-iodine-malonic acid and Briggs-Rauscher reactions.

10.
Phys Rev E ; 94(6-1): 062217, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28085378

RESUMO

We consider a generic reaction-diffusion-advection system where the flow velocity of the advection term is subjected to dichotomous noise with zero mean and Ornstein-Zernike correlation. A general condition for noisy-flow-induced instability is derived in the flow velocity-correlation rate parameter plane. Full numerical simulations on Gierer-Meinhardt model with activator-inhibitor kinetics have been performed to show how noisy differential flow can lead to symmetry breaking of a homogeneous stable state in the presence of noise resulting in traveling waves.

11.
J Chem Phys ; 143(12): 124901, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26429035

RESUMO

We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

12.
Artigo em Inglês | MEDLINE | ID: mdl-24229246

RESUMO

We examine the nonlinear response of a bistable system driven by a high-frequency force to a low-frequency weak field. It is shown that the rapidly varying temporal oscillation breaks the spatial symmetry of the centrosymmetric potential. This gives rise to a finite nonzero response at the second harmonic of the low-frequency field, which can be optimized by an appropriate choice of vibrational amplitude of the high-frequency field close to that for the linear response. The potential implications of the nonlinear vibrational resonance are analyzed.

13.
J Chem Phys ; 139(16): 164112, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24182009

RESUMO

We derive the conditions under which a set of arbitrary two dimensional autonomous kinetic equations can be reduced to the form of a generalized Rayleigh oscillator which admits of limit cycle solution. This is based on a linear transformation of field variables which can be found by inspection of the kinetic equations. We illustrate the scheme with the help of several chemical and bio-chemical oscillator models to show how they can be cast as a generalized Rayleigh oscillator.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA