Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
ACS Biomater Sci Eng ; 10(10): 6314-6331, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39285678

RESUMO

Multi drug resistance (MDR) in breast carcinoma still poses a significant impairment to successful chemotherapy. As the arsenal of anticancer agents increases with improved preclinical methods, the growth of therapeutic drug combinations is now unprecedented. The malignancies addressed by mono drugs often fail to limit cancer progression, resulting in resistant cancer, thereby offering combinatorial therapies a terrific edge over monodrug regimes. However, the selection of drug combinations required enough preliminary evidence for their synergistic effect. The fundamental mechanisms of MDR to chemotherapeutics are associated with the overexpression of membrane efflux pumps, alternations in drug targets, and increased drug metabolism. Unfortunately, it is very difficult for drugs to overcome resistance produced on their own or by another different drug action. In this context, herein, we report a simple delivery system for coencapsulation and intracellular codelivery of dual-drug thymoquinone (TQ) and doxorubicin (DOX) to resensitize DOX-resistant MDA MB231 cell line (231 R). The 231 R cell line developed in our lab showed an enhanced expression of the ATP-binding cassette (ABC) transporters P-gp1/MDR-1 and a declined miR-298 expression. The present delivery system is based on amine-functionalized mesoporous silica nanoparticles (MSNs), in which the side chain amine functional group was used to react with the carbonyl group of TQ, which acts as a pro-drug system (TQ-MSN) to release TQ and DOX simultaneously. DOX was encapsulated later into the above TQ-MSN by a simple diffusion method. The drugs containing MSNs were further coated with a hyaluronic acid-conjugated PEG-PLGA polymer (HA@TQ-DOX-MSN). This simple nanostrategy interferes with the MDR-1/miR-298 cross-talk, thereby allowing a significant reduction in drug efflux from the cell and highlighting a promising nanotechnology-based combinatorial delivery approach in managing breast cancer chemoresistance.


Assuntos
Benzoquinonas , Neoplasias da Mama , Doxorrubicina , Resistencia a Medicamentos Antineoplásicos , MicroRNAs , Nanopartículas , Dióxido de Silício , Doxorrubicina/farmacologia , Doxorrubicina/química , Doxorrubicina/administração & dosagem , Doxorrubicina/uso terapêutico , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Dióxido de Silício/química , MicroRNAs/metabolismo , Benzoquinonas/farmacologia , Benzoquinonas/química , Benzoquinonas/administração & dosagem , Feminino , Nanopartículas/química , Linhagem Celular Tumoral , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Porosidade , Portadores de Fármacos/química , Animais
2.
Artigo em Inglês | MEDLINE | ID: mdl-38600813

RESUMO

We investigated low-frequency current fluctuations, i.e., electronic noise, in FePS3 van der Waals layered antiferromagnetic semiconductor. The noise measurements have been used as noise spectroscopy for advanced materials characterization of the charge carrier dynamics affected by spin ordering and trapping states. Owing to the high resistivity of the material, we conducted measurements on vertical device configuration. The measured noise spectra reveal pronounced Lorentzian peaks of two different origins. One peak is observed only near the Néel temperature, and it is attributed to the corresponding magnetic phase transition. The second Lorentzian peak, visible in the entire measured temperature range, has characteristics of the trap-assisted generation-recombination processes similar to those in conventional semiconductors but shows a clear effect of the spin order reconfiguration near the Néel temperature. The obtained results contribute to understanding the electron and spin dynamics in this type of antiferromagnetic semiconductors and demonstrate the potential of electronic noise spectroscopy for advanced materials characterization.

3.
Chemistry ; 30(31): e202400398, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38549365

RESUMO

Molecules with curved architecture can exhibit unique optoelectronic properties due to the concave-convex π-surface. However, synthesizing negatively curved saddle-shaped aromatic systems has been challenging due to the internal structural strain. Herein, we report the facile synthesis of two polyhexagonal molecular systems, 1 and 2, with saddle shape geometry by judiciously varying the aromatic moiety, avoiding the harsh synthetic methods as that of heptagonal aromatic saddle systems. The unique geometry preferences of B, N, and S furnish suitable curvature to the molecules, featuring saddle shape. The saddle geometry also enables them to interact with fullerene C60 , and the supramolecular interactions of fullerene C60 with 1 and 2 modify their optoelectronic properties. Crystal structure analysis reveals that 1, with a small π-surface, forms a double columnar array of fullerenes in the solid state. In contrast, 2 with a large π-surface produces a supramolecular capsule entrapping two discrete fullerenes. The intermolecular interactions between B, N, S, and the aryl-π surface of the host and C60 guest are the stabilizing factors for creating these supramolecular structures. Comprehensive computational, optical, and Raman spectroscopic studies establish the charge transfer interactions between B-N doped heterocycle host and fullerene C60 guest.

4.
J Phys Chem Lett ; 15(11): 3078-3088, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38467015

RESUMO

A biomimetic cell-based carrier system based on monocyte membranes and liposomes has been designed to create a hybrid "Monocyte-LP" which inherits the surface antigens of the monocytes along with the drug encapsulation property of the liposome. Förster resonance energy transfer (FRET) and polarization gated anisotropy measurements show the stiffness of the vesicles obtained from monocyte membranes (Mons), phosphatidylcholine membranes (LP), and Monocyte-LP to follow an increasing order of Mons > Monocyte-LP > LP. The dynamics of interface bound water molecules plays a key role in the elasticity of the vesicles, which in turn imparts higher delivery efficacy to the hybrid Monocyte-LP for a model anticancer drug doxorubicin than the other two vesicles, indicating a critical balance between flexibility and rigidity for an efficient cellular uptake. The present work provides insight on the influence of elasticity of delivery vehicles for enhanced drug delivery.


Assuntos
Antineoplásicos , Lipossomos , Lipossomos/metabolismo , Monócitos/metabolismo , Doxorrubicina , Sistemas de Liberação de Medicamentos
5.
Chemistry ; 30(17): e202304219, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38155424

RESUMO

Herein, we report the design, synthesis, structure, and electrochemical study of doubly ßC-B-N fused Ni(II) porphyrins (1-trans, 1-cis, 2-trans, and 2-cis). These compounds have been synthesized from A2B2 type dipyridyl Ni(II) porphyrins (Ar=Ph for 1 a; Ar=C6F5 for 2 a) via Lewis base-directed electrophilic aromatic borylation reactions. The solution state structures of these compounds have been established using 1H NMR, 11B NMR, 1H-1H COSY, 1H-13C HSQC, and 19F-13C HSQC NMR techniques. Single crystal X-ray analysis have revealed that 1-trans, 1-cis, and 2-trans adopt ruffled conformations, with alternate meso-carbons on the opposite sides of the mean porphyrin plane. The Soret bands in the absorption spectra of the B-N fused molecules are ~40 nm redshifted compared to unfused Ni(II) porphyrin precursors. The B-N fusion have diminished the redox potential of fused porphyrins. Although 1-trans and 1-cis, show four oxidation processes, 2-trans and 2-cis show only three oxidation processes. DFT studies have revealed that the tetrahedral geometry of the boron has induced a twist in the π-conjugation, which destabilizes the HOMO and stabilizes the LUMO in 1-trans, 1-cis, 2-trans, and 2-cis.

6.
Cells ; 12(18)2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37759537

RESUMO

In arteries and arterioles, a chronic increase in blood pressure raises wall tension. This continuous biomechanical strain causes a change in gene expression in vascular smooth muscle cells (VSMCs) that may lead to pathological changes. Here we have characterised the functional properties of lipoma-preferred partner (LPP), a Lin11-Isl1-Mec3 (LIM)-domain protein, which is most closely related to the mechanotransducer zyxin but selectively expressed by smooth muscle cells, including VSMCs in adult mice. VSMCs isolated from the aorta of LPP knockout (LPP-KO) mice displayed a higher rate of proliferation than their wildtype (WT) counterparts, and when cultured as three-dimensional spheroids, they revealed a higher expression of the proliferation marker Ki 67 and showed greater invasion into a collagen gel. Accordingly, the gelatinase activity was increased in LPP-KO but not WT spheroids. The LPP-KO spheroids adhering to the collagen gel responded with decreased contraction to potassium chloride. The relaxation response to caffeine and norepinephrine was also smaller in the LPP-KO spheroids than in their WT counterparts. The overexpression of zyxin in LPP-KO VSMCs resulted in a reversal to a more quiescent differentiated phenotype. In native VSMCs, i.e., in isolated perfused segments of the mesenteric artery (MA), the contractile responses of LPP-KO segments to potassium chloride, phenylephrine or endothelin-1 did not vary from those in isolated perfused WT segments. In contrast, the myogenic response of LPP-KO MA segments was significantly attenuated while zyxin-deficient MA segments displayed a normal myogenic response. We propose that LPP, which we found to be expressed solely in the medial layer of different arteries from adult mice, may play an important role in controlling the quiescent contractile phenotype of VSMCs.


Assuntos
Lipoma , Músculo Liso Vascular , Camundongos , Animais , Zixina/metabolismo , Músculo Liso Vascular/metabolismo , Cloreto de Potássio/metabolismo , Colágeno/metabolismo , Fatores de Transcrição/metabolismo , Miócitos de Músculo Liso/metabolismo , Lipoma/metabolismo , Lipoma/patologia
7.
Neurooncol Adv ; 5(1): vdad088, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554225

RESUMO

Background: Myeloid-derived suppressor cells (MDSCs) are critical regulators of immunosuppression and radioresistance in glioblastoma (GBM). The primary objective of this pilot phase Ib study was to validate the on-target effect of tadalafil on inhibiting MDSCs in peripheral blood and its safety when combined with chemoradiotherapy in GBM patients. Methods: Patients with newly diagnosed IDH-wild-type GBM received radiation therapy (RT) and temozolomide (TMZ) combined with oral tadalafil for 2 months. A historical cohort of 12 GBM patients treated with RT and TMZ was used as the comparison group. The ratio of MDSCs, T cells, and cytokines at week 6 of RT compared to baseline were analyzed using flow cytometry. Progression-free survival (PFS) and overall survival (OS) were estimated by the Kaplan-Meier method. Results: Tadalafil was well tolerated with no dose-limiting toxicity among 16 evaluable patients. The tadalafil cohort had a significantly lower ratio of circulating MDSCs than the control: granulocytic-MDSCs (mean 0.78 versus 3.21, respectively, P = 0.01) and monocytic-MDSCs (1.02 versus 1.96, respectively, P = 0.006). Tadalafil increased the CD8 ratio compared to the control (1.99 versus 0.70, respectively, P < 0.001), especially the PD-1-CD8 T cells expressing Ki-67, CD38, HLA-DR, CD28, and granzyme B. Proinflammatory cytokine IL-1ß was also significantly increased after tadalafil compared to the control. The tadalafil cohort did not have significantly different PFS and OS than the historical control. Conclusions: Concurrent tadalafil is well tolerated during chemoradiotherapy for GBM. Tadalafil is associated with a reduction of peripheral MDSCs after chemoradiotherapy and increased CD8 T-cell proliferation and activation.

8.
J Clin Invest ; 133(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37279067

RESUMO

Patients with cancer who have high serum levels of squamous cell carcinoma antigen 1 (SCCA1, now referred to as SERPINB3) commonly experience treatment resistance and have a poor prognosis. Despite being a clinical biomarker, the modulation of SERPINB3 in tumor immunity is poorly understood. We found positive correlations of SERPINB3 with CXCL1, CXCL8 (CXCL8/9), S100A8, and S100A9 (S100A8/A9) myeloid cell infiltration through RNA-Seq analysis of human primary cervical tumors. Induction of SERPINB3 resulted in increased CXCL1/8 and S100A8/A9 expression, which promoted monocyte and myeloid-derived suppressor cell (MDSC) migration in vitro. In mouse models, Serpinb3a tumors showed increased MDSC and tumor-associated macrophage (TAM) infiltration, contributing to T cell inhibition, and this was further augmented upon radiation. Intratumoral knockdown (KD) of Serpinb3a resulted in tumor growth inhibition and reduced CXCL1 and S100A8/A expression and MDSC and M2 macrophage infiltration. These changes led to enhanced cytotoxic T cell function and sensitized tumors to radiotherapy (RT). We further revealed that SERPINB3 promoted STAT-dependent expression of chemokines, whereby inhibition of STAT activation by ruxolitinib or siRNA abrogated CXCL1/8 and S100A8/ A9 expression in SERPINB3 cells. Patients with elevated pretreatment SCCA levels and high phosphorylated STAT3 (p-STAT3) had increased intratumoral CD11b+ myeloid cells compared with patients with low SCCA levels and p-STAT3, who had improved overall survival after RT. These findings provide a preclinical rationale for targeting SERPINB3 in tumors to counteract immunosuppression and improve the response to RT.


Assuntos
Calgranulina A , Serpinas , Camundongos , Animais , Humanos , Calgranulina A/genética , Calgranulina B/genética , Serpinas/genética , Quimiocinas/metabolismo
9.
ACS Chem Neurosci ; 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37014355

RESUMO

The overproduction and deposition of the amyloid-ß (Aß) aggregates are accountable for the genesis and development of the neurologic disorder Alzheimer's disease (AD). Effective medications and detection agents for AD are still deficient. General challenges for the diagnosis of Aß aggregates in the AD brain are (i) crossing the blood-brain barrier (BBB) and (ii) selectivity to Aß species with (iii) emission maxima in the 500-750 nm region. Thioflavin-T (ThT) is the most used fluorescent probe for imaging Aß fibril aggregates. However, because of the poor BBB crossing (log P = -0.14) and short emission wavelength (482 nm) after binding with Aß fibrils, ThT can be limited to in vitro use only. Herein, we have developed Aß deposit-recognizing fluorescent probes (ARs) with a D-π-A architecture and a longer emission wavelength after binding with Aß species. Among the newly designed probes, AR-14 showed an admirable fluorescence emission (>600 nm) change after binding with soluble Aß oligomers (2.3-fold) and insoluble Aß fibril aggregates (4.5-fold) with high affinities Kd = 24.25 ± 4.10 nM; Ka = (4.123 ± 0.69) × 107 M-1 for fibrils; Kd = 32.58 ± 4.89 nM; and Ka = (3.069 ± 0.46) × 107 M-1 for oligomers with high quantum yield, molecular weight of <500 Da, reasonable log P = 1.77, stability in serum, and nontoxicity, and it can cross the BBB efficiently. The binding affinity of AR-14 toward Aß species is proved by fluorescence binding studies and fluorescent staining of 18-month-old triple-transgenic (3xTg) mouse brain sections. In summary, the fluorescent probe AR-14 is efficient and has an admirable quality for the detection of soluble and insoluble Aß deposits in vitro and in vivo.

10.
ACS Chem Neurosci ; 14(4): 773-786, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36728363

RESUMO

The misfolding of amyloid beta (Aß) peptides into Aß fibrillary aggregates is a major hallmark of Alzheimer's disease (AD), which responsible for the excess production of hydrogen peroxide (H2O2), a prominent reactive oxygen species (ROS) from the molecular oxygen (O2) by the reduction of the Aß-Cu(I) complex. The excessive production of H2O2 causes oxidative stress and inflammation in the AD brain. Here, we have designed and developed a dual functionalized molecule VBD by using π-conjugation (C═C) in the backbone structure. In the presence of H2O2, the VBD can turn into fluorescent probe VBD-1 by cleaving of the selective boronate ester group. The fluorescent probe VBD-1 can undergo intramolecular charge transfer transition (ICT) by a π-conjugative system, and as a result, its emission increases from the yellow (532 nm) to red (590 nm) region. The fluorescence intensity of VBD-1 increases by 3.5-fold upon binding with Aß fibrillary aggregates with a high affinity (Kd = 143 ± 12 nM). Finally, the VBD reduces the cellular toxic H2O2 as proven by the CCA assay and DCFDA assay and the binding affinity of VBD-1 was confirmed by using in vitro histological staining in 8- and 18-month-old triple transgenic AD (3xTg-AD) mice brain slices.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Peptídeos beta-Amiloides/metabolismo , Corantes Fluorescentes/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/química , Encéfalo/metabolismo , Benzotiazóis/metabolismo , Amiloide/metabolismo , Camundongos Transgênicos
11.
Sci Transl Med ; 15(680): eabn6758, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36696484

RESUMO

Severe and prolonged lymphopenia frequently occurs in patients with glioblastoma after standard chemoradiotherapy and has been associated with worse survival, but its underlying biological mechanism is not well understood. To address this, we performed a correlative study in which we collected and analyzed peripheral blood of patients with glioblastoma (n = 20) receiving chemoradiotherapy using genomic and immune monitoring technologies. RNA sequencing analysis of the peripheral blood mononuclear cells (PBMC) showed an elevated concentration of myeloid-derived suppressor cell (MDSC) regulatory genes in patients with lymphopenia when compared with patients without lymphopenia after chemoradiotherapy. Additional analysis including flow cytometry and single-cell RNA sequencing further confirmed increased numbers of circulating MDSC in patients with lymphopenia when compared with patients without lymphopenia after chemoradiotherapy. Preclinical murine models were also established and demonstrated a causal relationship between radiation-induced MDSC and systemic lymphopenia using transfusion and depletion experiments. Pharmacological inhibition of MDSC using an arginase-1 inhibitor (CB1158) or phosphodiesterase-5 inhibitor (tadalafil) during radiation therapy (RT) successfully abrogated radiation-induced lymphopenia and improved survival in the preclinical models. CB1158 and tadalafil are promising drugs in reducing radiation-induced lymphopenia in patients with glioblastoma. These results demonstrate the promise of using these classes of drugs to reduce treatment-related lymphopenia and immunosuppression.


Assuntos
Glioblastoma , Linfopenia , Células Supressoras Mieloides , Humanos , Animais , Camundongos , Glioblastoma/complicações , Glioblastoma/tratamento farmacológico , Glioblastoma/radioterapia , Leucócitos Mononucleares , Tadalafila , Linfopenia/etiologia , Quimiorradioterapia/efeitos adversos
12.
Sci Rep ; 12(1): 10772, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750870

RESUMO

Breast cancer is the most common malignancy in women and is a heterogeneous disease at molecular level. Early detection and specificity are the key prerequisite for the treatment of this deadly cancer. To address these issues attention on the breast cancer specific receptor protein(s) is the most realistic option. Herein estrogen (E) and progesterone (Pg) receptors(R) were considered to design fluorescent molecular probes with possible therapeutic option. We adopted QSAR technique to design a library of benzothiazole-purine hybrid molecules. Molecular docking offers us three screened molecules as most potential. Among these molecules one abbreviated as "CPIB" showed blue fluorescence and detected ER positive cancer cells at 1 nM concentration. At elevated concentration, CPIB induces apoptotic deaths of same cancer cells through targeting intracellular microtubules without affecting normal cells or ER negative cells. CPIB is one of its kind with two-in-one potential of "Detection and Destroy" ability targeting ER positive breast cancer cells.


Assuntos
Neoplasias da Mama , Receptores de Estrogênio , Benzotiazóis/farmacologia , Benzotiazóis/uso terapêutico , Neoplasias da Mama/patologia , Feminino , Corantes Fluorescentes/uso terapêutico , Humanos , Microtúbulos/patologia , Simulação de Acoplamento Molecular , Sondas Moleculares , Purinas/uso terapêutico , Receptores de Estrogênio/genética , Receptores de Progesterona/genética
14.
Biochem J ; 479(9): 1007-1030, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35470373

RESUMO

Human Complement Receptor 1 (HuCR1) is a potent membrane-bound regulator of complement both in vitro and in vivo, acting via interaction with its ligands C3b and C4b. Soluble versions of HuCR1 have been described such as TP10, the recombinant full-length extracellular domain, and more recently CSL040, a truncated version lacking the C-terminal long homologous repeat domain D (LHR-D). However, the role of N-linked glycosylation in determining its pharmacokinetic (PK) and pharmacodynamic (PD) properties is only partly understood. We demonstrated a relationship between the asialo-N-glycan levels of CSL040 and its PK/PD properties in rats and non-human primates (NHPs), using recombinant CSL040 preparations with varying asialo-N-glycan levels. The clearance mechanism likely involves the asialoglycoprotein receptor (ASGR), as clearance of CSL040 with a high proportion of asialo-N-glycans was attenuated in vivo by co-administration of rats with asialofetuin, which saturates the ASGR. Biodistribution studies also showed CSL040 localization to the liver following systemic administration. Our studies uncovered differential PD effects by CSL040 on complement pathways, with extended inhibition in both rats and NHPs of the alternative pathway compared with the classical and lectin pathways that were not correlated with its PK profile. Further studies showed that this effect was dose dependent and observed with both CSL040 and the full-length extracellular domain of HuCR1. Taken together, our data suggests that sialylation optimization is an important consideration for developing HuCR1-based therapeutic candidates such as CSL040 with improved PK properties and shows that CSL040 has superior PK/PD responses compared with full-length soluble HuCR1.


Assuntos
Lectinas , Polissacarídeos , Animais , Complemento C3b/metabolismo , Complemento C4b/metabolismo , Glicosilação , Lectinas/metabolismo , Ratos , Receptores de Complemento/metabolismo , Receptores de Complemento 3b/metabolismo , Distribuição Tecidual
15.
Cell Mol Life Sci ; 79(2): 93, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35075545

RESUMO

Arterial hypertension causes left ventricular hypertrophy leading to dilated cardiomyopathy. Following compensatory cardiomyocyte hypertrophy, cardiac dysfunction develops due to loss of cardiomyocytes preceded or paralleled by cardiac fibrosis. Zyxin acts as a mechanotransducer in vascular cells that may promote cardiomyocyte survival. Here, we analyzed cardiac function during experimental hypertension in zyxin knockout (KO) mice. In zyxin KO mice, made hypertensive by way of deoxycorticosterone acetate (DOCA)-salt treatment telemetry recording showed an attenuated rise in systolic blood pressure. Echocardiography indicated a systolic dysfunction, and isolated working heart measurements showed a decrease in systolic elastance. Hearts from hypertensive zyxin KO mice revealed increased apoptosis, fibrosis and an upregulation of active focal adhesion kinase as well as of integrins α5 and ß1. Both interstitial and perivascular fibrosis were even more pronounced in zyxin KO mice exposed to angiotensin II instead of DOCA-salt. Stretched microvascular endothelial cells may release collagen 1α2 and TGF-ß, which is characteristic for the transition to an intermediate mesenchymal phenotype, and thus spur the transformation of cardiac fibroblasts to myofibroblasts resulting in excessive scar tissue formation in the heart of hypertensive zyxin KO mice. While zyxin KO mice per se do not reveal a cardiac phenotype, this is unmasked upon induction of hypertension and owing to enhanced cardiomyocyte apoptosis and excessive fibrosis causes cardiac dysfunction. Zyxin may thus be important for the maintenance of cardiac function in spite of hypertension.


Assuntos
Angiotensina II/toxicidade , Cardiomegalia/prevenção & controle , Fibrose/prevenção & controle , Hipertensão/complicações , Miócitos Cardíacos/citologia , Zixina/fisiologia , Animais , Apoptose , Pressão Sanguínea , Cardiomegalia/etiologia , Cardiomegalia/patologia , Fibrose/etiologia , Fibrose/patologia , Hipertensão/induzido quimicamente , Hipertensão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo
16.
Clin Cancer Res ; 28(6): 1229-1239, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35031547

RESUMO

PURPOSE: Patients with glioblastoma (GBM) are treated with radiotherapy (RT) and temozolomide (TMZ). These treatments may cause prolonged systemic lymphopenia, which itself is associated with poor outcomes. NT-I7 is a long-acting IL7 that expands CD4 and CD8 T-cell numbers in humans and mice. We tested whether NT-I7 prevents systemic lymphopenia and improves survival in mouse models of GBM. EXPERIMENTAL DESIGN: C57BL/6 mice bearing intracranial tumors (GL261 or CT2A) were treated with RT (1.8 Gy/day × 5 days), TMZ (33 mg/kg/day × 5 days), and/or NT-I7 (10 mg/kg on the final day of RT). We followed the mice for survival while serially analyzing levels of circulating T lymphocytes. We assessed regulatory T cells (Treg) and cytotoxic T lymphocytes in the tumor microenvironment, cervical lymph nodes, spleen, and thymus, and hematopoietic stem and progenitor cells in the bone marrow. RESULTS: GBM tumor-bearing mice treated with RT+NT-I7 increased T lymphocytes in the lymph nodes, thymus, and spleen, enhanced IFNγ production, and decreased Tregs in the tumor which was associated with a significant increase in survival. NT-I7 also enhanced central memory and effector memory CD8 T cells in lymphoid organs and tumor. Depleting CD8 T cells abrogated the effects of NT-I7. Furthermore, NT-I7 treatment decreased progenitor cells in the bone marrow. CONCLUSIONS: In orthotopic glioma-bearing mice, NT-I7 mitigates RT-related lymphopenia, increases cytotoxic CD8 T lymphocytes systemically and in the tumor, and improves survival. A phase I/II trial to evaluate NT-I7 in patients with high-grade gliomas is ongoing (NCT03687957).


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Linfopenia , Animais , Neoplasias Encefálicas/patologia , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Ensaios Clínicos Fase I como Assunto , Ensaios Clínicos Fase II como Assunto , Modelos Animais de Doenças , Glioma/patologia , Humanos , Fatores Imunológicos/farmacologia , Interleucina-7 , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes de Fusão , Linfócitos T Citotóxicos/patologia , Temozolomida/farmacologia , Microambiente Tumoral
17.
Am J Physiol Lung Cell Mol Physiol ; 322(2): L273-L282, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34936510

RESUMO

Mouse models of acute lung injury (ALI) have been instrumental for studies of the biological underpinnings of lung inflammation and permeability, but murine models of sepsis generate minimal lung injury. Our goal was to create a murine sepsis model of ALI that reflects the inflammation, lung edema, histological abnormalities, and physiological dysfunction that characterize ALI. Using a cecal slurry (CS) model of polymicrobial abdominal sepsis and exposure to hyperoxia (95%), we systematically varied the timing and dose of the CS injection, fluids and antibiotics, and dose of hyperoxia. We found that CS alone had a high mortality rate that was improved with the addition of antibiotics and fluids. Despite this, we did not see evidence of ALI as measured by bronchoalveolar lavage (BAL) cell count, total protein, C-X-C motif chemokine ligand 1 (CXCL-1) or by lung wet:dry weight ratio. Addition of hyperoxia [95% fraction of inspired oxygen ([Formula: see text])] to CS immediately after CS injection increased BAL cell counts, CXCL-1, and lung wet:dry weight ratio but was associated with 40% mortality. Splitting the hyperoxia treatment into two 12-h exposures (0-12 h and 24-36 h) after CS injection increased survival to 75% and caused significant lung injury compared with CS alone as measured by increased BAL total cell count (92,500 vs. 240,000, P = 0.0004), BAL protein (71 vs. 103 µg/mL, P = 0.0030), and lung wet:dry weight ratio (4.5 vs. 5.5, P = 0.0005), and compared with sham as measured by increased BAL CXCL-1 (20 vs. 2,372 pg/mL, P < 0.0001) and histological lung injury score (1.9 vs. 4.2, P = 0.0077). In addition, our final model showed evidence of lung epithelial [increased BAL and plasma receptor for advanced glycation end products (RAGE)] and endothelial (increased Syndecan-1 and sulfated glycosaminoglycans) injury. In conclusion, we have developed a clinically relevant mouse model of sepsis-induced ALI using intraperitoneal injection of CS, antibiotics and fluids, and hyperoxia. This clinically relevant model can be used for future studies of sepsis-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Hiperóxia , Sepse , Lesão Pulmonar Aguda/patologia , Animais , Antibacterianos/efeitos adversos , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Hiperóxia/complicações , Hiperóxia/patologia , Inflamação/patologia , Pulmão/metabolismo , Camundongos , Permeabilidade , Sepse/patologia
18.
Front Physiol ; 12: 769321, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867475

RESUMO

Arterial hypertension is the leading risk factor for cardiovascular morbidity and mortality worldwide. However, little is known about the cellular mechanisms underlying it. In small arteries and arterioles, a chronic increase in blood pressure raises wall tension and hence stretches, namely, the medial vascular smooth muscle cells (VSMC) but also endothelial cell (EC) to cell contacts. Initially compensated by an increase in vascular tone, the continuous biomechanical strain causes a prominent change in gene expression in both cell types, frequently driving an arterial inward remodeling process that ultimately results in a reduction in lumen diameter, stiffening of the vessel wall, and fixation of blood pressure, namely, diastolic blood pressure, at the elevated level. Sensing and propagation of this supraphysiological stretch into the nucleus of VSMC and EC therefore seems to be a crucial step in the initiation and advancement of hypertension-induced arterial remodeling. Focal adhesions (FA) represent an important interface between the extracellular matrix and Lin11-Isl1-Mec3 (LIM) domain-containing proteins, which can translocate from the FA into the nucleus where they affect gene expression. The varying biomechanical cues to which vascular cells are exposed can thus be rapidly and specifically propagated to the nucleus. Zyxin was the first protein described with such mechanotransducing properties. It comprises 3 C-terminal LIM domains, a leucine-rich nuclear export signal, and N-terminal features that support its association with the actin cytoskeleton. In the cytoplasm, zyxin promotes actin assembly and organization as well as cell motility. In EC, zyxin acts as a transcription factor, whereas in VSMC, it has a less direct effect on mechanosensitive gene expression. In terms of homology and structural features, lipoma preferred partner is the nearest relative of zyxin among the LIM domain proteins. It is almost exclusively expressed by smooth muscle cells in the adult, resides like zyxin at FA but seems to affect mechanosensitive gene expression indirectly, possibly via altering cortical actin dynamics. Here, we highlight what is currently known about the role of these LIM domain proteins in mechanosensing and transduction in vascular cells.

19.
PLoS One ; 16(10): e0258192, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34614035

RESUMO

OBJECTIVES: Acquired coagulopathy may be associated with bleeding risk. Approaches to restore haemostasis include administration of coagulation factor concentrates, but there are concerns regarding potential prothrombotic risk. The present study assessed the prothrombotic potential of four-factor prothrombin complex concentrate (4F-PCC) versus activated PCC (aPCC) and recombinant factor VIIa (rFVIIa), using three preclinical animal models. METHODS: The first model was a modified Wessler model of venous stasis-induced thrombosis in rabbit, focusing on dilutional coagulopathy; the second model employed the same system but focused on direct oral anticoagulant reversal (i.e. edoxaban). The third model assessed the prothrombotic impact of 4F-PCC, aPCC and rFVIIa in a rat model of ferric chloride-induced arterial thrombosis. RESULTS: In the first model, thrombi were observed at aPCC doses ≥10 IU/kg (therapeutic dose 100 IU/kg) and rFVIIa doses ≥50 µg/kg (therapeutic dose 90 µg/kg), but not 4F-PCC 50 IU/kg (therapeutic dose 50 IU/kg). The impact of 4F-PCC (up to 300 IU/kg) on thrombus formation was evident from 10 minutes post-administration, but not at 24 hours post-administration; this did not change with addition of tranexamic acid and/or fibrinogen concentrate. 4F-PCC-induced thrombus formation was lower after haemodilution versus non-haemodilution. In the second model, no prothrombotic effect was confirmed at 4F-PCC 50 IU/kg. The third model showed lower incidence of thrombus formation for 4F-PCC 50 IU/kg versus aPCC (50 U/kg) and rFVIIa (90 µg/kg). CONCLUSIONS: These results suggest that 4F-PCC has a low thrombotic potential versus aPCC or rFVIIa, supporting the clinical use of 4F-PCC for the treatment of coagulopathy-mediated bleeding.


Assuntos
Fatores de Coagulação Sanguínea/metabolismo , Trombose/metabolismo , Animais , Artérias/efeitos dos fármacos , Artérias/patologia , Fator VIIa/farmacologia , Feminino , Hemodiluição , Coelhos , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Trombose/patologia , Fatores de Tempo , Ácido Tranexâmico/farmacologia
20.
Comput Biol Med ; 135: 104591, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34216889

RESUMO

The continued sustained threat of the SARS-CoV-2 virus world-wide, urgently calls for far-reaching effective therapeutic strategies for treating this emerging infection. Accordingly, this study explores mode of action and therapeutic potential of existing antiviral drugs. Multiple sequence alignment and phylogenetic analyses indicate that the RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 was mutable and similar to bat coronavirus RaTG13. Successive interactions between RdRp (nsp12 alone or in complex with cofactors nsp7-8) and viral RNA demonstrated that the binding affinity values remained the same, but the sites of interaction of RdRp (highly conserved for homologous sequences from different organisms) were altered in the presence of selected antiviral drugs such as Remdesivir, and Sofosbuvir. The antiviral drug Sofosbuvir reduced the number of hydrogen bonds formed between RdRp and RNA. Remdesivir bound more tightly to viral RNA than viral RdRp alone or the nsp12-7-8 hexadecameric complex, resulting in a significant number of hydrogen bonds being formed in the uracil-rich region. The interaction between nsp12-7-8 complex and RNA was mediated by specific interaction sites of nsp7-8. Therefore, the conserved nature of RdRp interaction sites, and alterations due to drug intervention indicate the therapeutic potential of the selected drugs. In this article, we provide additional focus on the interacting amino acids of the nsp7-8 complex and highlight crucial regions that could be targeted for precluding a correct recognition of subunits involved in the hexadecameric assembly, to rationally design molecules endowed with a significant antiviral profile.


Assuntos
COVID-19 , RNA Polimerase Dependente de RNA , Antivirais/farmacologia , Simulação por Computador , Humanos , Filogenia , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA