Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 397
Filtrar
1.
Breast Cancer Res ; 26(1): 113, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965558

RESUMO

GNA13 (Gα13) is one of two alpha subunit members of the G12/13 family of heterotrimeric G-proteins which mediate signaling downstream of GPCRs. It is known to be essential for embryonic development and vasculogenesis and has been increasingly shown to be involved in mediating several steps of cancer progression. Recent studies found that Gα13 can function as an oncogene and contributes to progression and metastasis of multiple tumor types, including ovarian, head and neck and prostate cancers. In most cases, Gα12 and Gα13, as closely related α-subunits in the subfamily, have similar cellular roles. However, in recent years their differences in signaling and function have started to emerge. We previously identified that Gα13 drives invasion of Triple Negative Breast Cancer (TNBC) cells in vitro. As a highly heterogenous disease with various well-defined molecular subtypes (ER+ /Her2-, ER+ /Her2+, Her2+, TNBC) and subtype associated outcomes, the function(s) of Gα13 beyond TNBC should be explored. Here, we report the finding that low expression of GNA13 is predictive of poorer survival in breast cancer, which challenges the conventional idea of Gα12/13 being universal oncogenes in solid tumors. Consistently, we found that Gα13 suppresses the proliferation in multiple ER+ breast cancer cell lines (MCF-7, ZR-75-1 and T47D). Loss of GNA13 expression drives cell proliferation, soft-agar colony formation and in vivo tumor formation in an orthotopic xenograft model. To evaluate the mechanism of Gα13 action, we performed RNA-sequencing analysis on these cell lines and found that loss of GNA13 results in the upregulation of MYC signaling pathways in ER+ breast cancer cells. Simultaneous silencing of MYC reversed the proliferative effect from the loss of GNA13, validating the role of MYC in Gα13 regulation of proliferation. Further, we found Gα13 regulates the expression of MYC, at both the transcript and protein level in an ERα dependent manner. Taken together, our study provides the first evidence for a tumor suppressive role for Gα13 in breast cancer cells and demonstrates for the first time the direct involvement of Gα13 in ER-dependent regulation of MYC signaling. With a few exceptions, elevated Gα13 levels are generally considered to be oncogenic, similar to Gα12. This study demonstrates an unexpected tumor suppressive role for Gα13 in ER+ breast cancer via regulation of MYC, suggesting that Gα13 can have subtype-dependent tumor suppressive roles in breast cancer.


Assuntos
Proliferação de Células , Receptor alfa de Estrogênio , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-myc , Humanos , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/genética , Feminino , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Animais , Linhagem Celular Tumoral , Camundongos , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Transdução de Sinais , Regulação para Cima
2.
World J Clin Cases ; 12(18): 3332-3339, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38983439

RESUMO

BACKGROUND: Primary hyperaldosteronism (PH) is considered to contribute to increased risk of developing type 2 diabetes mellitus (T2DM) and prediabetes. Both PH and DM are associated with increased risk for hypertension, cardiovascular diseases, and chronic kidney diseases. However, data on prevalence of T2DM and prediabetes in PH, and impact of T2DM and prediabetes on presentation and cardio renal complications in PH at presentation is sparse. AIM: To determine the prevalence of T2DM and prediabetes in PH at diagnosis and impact on presentation and complications of PH. METHODS: A retrospective cohort study was conducted in tertiary care settings in individuals with confirmed diagnosis of PH at presentation. Demographic variables, clinical presentations, duration and degree of hypertension, complications, laboratory parameters including sodium, potassium levels, plasma aldosterone concentration (PAC), plasma renin activity (PRA), and aldosterone to renin ratio (ARR) and cardio-renal parameters were collected. Comparison was done between three groups: PH with no DM (Group A) or with pre-diabetes (Group B) or with T2DM (Group C). P < 0.05 was statistically significant. RESULTS: Among 78 individuals with confirmed PH, 62% had pre-diabetes or diabetes; with 37% having DM. Mean duration of T2DM was 5.97 ± 4.7 years. The mean levels of glycaemic parameters among the group A vs B vs C individuals were fasting plasma glucose (mg/dL): 87.9 ± 6.5, 105.4 ± 9.02, 130.6 ± 21.1; post prandial plasma glucose (mg/dL): 122.7 ± 9.8, 154.9 ± 14, 196.7 ± 38.0; glycated haemoglobin (%) (5.3 ± 0.2, 5.9 ± 0.2, 7.5 ± 0.6, P < 0.05), respectively. There was no significant difference in the biochemical parameters (PAC, PRA, ARR, sodium, potassium levels), presentation and complications between the groups. Cardio renal parameters or degree and duration of hypertension were comparable between the groups. CONCLUSION: Significant prevalence of T2DM and prediabetes in PH at diagnosis does not impact its presentation or complications. Early screening for undetected PH in T2DM and prediabetes subjects with hypertension may prevent complications.

3.
Microrna ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38952162

RESUMO

BACKGROUND: Publications reveal different outcomes achieved by genetically knocking out a long non-coding microRNA-host-gene (lncMIRHG) versus the administration of pharma-cologic antagomirs specifically targeting the guide strand of such intragenic microRNA. This suggests that lncMIRHGs may perform diverse functions unrelated to their role as intragenic miRNA precursors. OBJECTIVE: This review synthesizes in silico, in vitro, and in vivo findings from our lab and others to compare the effects of knocking out the long non-coding RNA MIR22HG, which hosts miR-22, versus administering pharmacological antagomirs targeting miR-22-3p. METHODS: In silico analyses at the gene, pathway, and network levels reveal both distinct and overlapping targets of hsa-miR-22-3p and its host gene, MIR22HG. While pharmacological an-tagomirs targeting miR-22-3p consistently improve various metabolic parameters in cell culture and animal models across multiple studies, genetic knockout of MIR22HG yields inconsistent results among different research groups. RESULTS: Additionally, MIR22HG functions as a circulating endogenous RNA (ceRNA) or "sponge" that simultaneously modulates multiple miRNA-mRNA interactions by competing for binding to several miRNAs. CONCLUSIONS: From a therapeutic viewpoint, genetic inactivation of a lncMIRHG and pharmaco-logic antagonism of the guide strand of its related intragenic miRNA produce different results. This should be expected as lncMIRHGs play dual roles, both as lncRNA and as a source for primary miRNA transcripts.

5.
Proc Natl Acad Sci U S A ; 121(21): e2318591121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739802

RESUMO

The transcription factor p73, a member of the p53 tumor-suppressor family, regulates cell death and also supports tumorigenesis, although the mechanistic basis for the dichotomous functions is poorly understood. We report here the identification of an alternate transactivation domain (TAD) located at the extreme carboxyl (C) terminus of TAp73ß, a commonly expressed p73 isoform. Mutational disruption of this TAD significantly reduced TAp73ß's transactivation activity, to a level observed when the amino (N)-TAD that is similar to p53's TAD, is mutated. Mutation of both TADs almost completely abolished TAp73ß's transactivation activity. Expression profiling highlighted a unique set of targets involved in extracellular matrix-receptor interaction and focal adhesion regulated by the C-TAD, resulting in FAK phosphorylation, distinct from the N-TAD targets that are common to p53 and are involved in growth inhibition. Interestingly, the C-TAD targets are also regulated by the oncogenic, amino-terminal-deficient DNp73ß isoform. Consistently, mutation of C-TAD reduces cellular migration and proliferation. Mechanistically, selective binding of TAp73ß to DNAJA1 is required for the transactivation of C-TAD target genes, and silencing DNAJA1 expression abrogated all C-TAD-mediated effects. Taken together, our results provide a mechanistic basis for the dichotomous functions of TAp73 in the regulation of cellular growth through its distinct TADs.


Assuntos
Proliferação de Células , Domínios Proteicos , Ativação Transcricional , Proteína Tumoral p73 , Proteína Tumoral p73/metabolismo , Proteína Tumoral p73/genética , Humanos , Movimento Celular/genética , Mutação , Linhagem Celular Tumoral , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Fosforilação , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genética
6.
Cells ; 13(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38607027

RESUMO

The pro-protein convertase FURIN (PCSK3) is implicated in a wide range of normal and pathological biological processes such as infectious diseases, cancer and cardiovascular diseases. Previously, we performed a systemic inhibition of FURIN in a mouse model of atherosclerosis and demonstrated significant plaque reduction and alterations in macrophage function. To understand the cellular mechanisms affected by FURIN inhibition in myeloid cells, we optimized a CRISPR-mediated gene deletion protocol for successfully deriving hemizygous (HZ) and nullizygous (NZ) FURIN knockout clones in U937 monocytic cells using lipotransfection-based procedures and a dual guide RNA delivery strategy. We observed differences in monocyte and macrophage functions involving phagocytosis, lipid accumulation, cell migration, inflammatory gene expression, cytokine release patterns, secreted proteomics (cytokines) and whole-genome transcriptomics between wild-type, HZ and NZ FURIN clones. These studies provide a mechanistic basis on the possible roles of myeloid cell FURIN in cardiovascular disorders.


Assuntos
Furina , Edição de Genes , Monócitos , Animais , Humanos , Camundongos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Citocinas/genética , Furina/genética , Furina/metabolismo , Monócitos/metabolismo , Multiômica , RNA Guia de Sistemas CRISPR-Cas , Células U937
7.
Biomed Pharmacother ; 173: 116341, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428309

RESUMO

Obesity is a significant risk factor for several chronic diseases. However, pre-menopausal females are protected against high-fat diet (HFD)-induced obesity and its adverse effects. The pregnane X receptor (PXR, NR1I2), a xenobiotic-sensing nuclear receptor, promotes short-term obesity-associated liver disease only in male mice but not in females. Therefore, the current study investigated the metabolic and pathophysiological effects of a long-term 52-week HFD in female wild-type (WT) and PXR-KO mice and characterized the PXR-dependent molecular pathways involved. After 52 weeks of HFD ingestion, the body and liver weights and several markers of hepatotoxicity were significantly higher in WT mice than in their PXR-KO counterparts. The HFD-induced liver injury in WT female mice was also associated with upregulation of the hepatic mRNA levels of peroxisome proliferator-activated receptor gamma (Pparg), its target genes, fat-specific protein 27 (Fsp27), and the liver-specific Fsp27b involved in lipid accumulation, apoptosis, and inflammation. Notably, PXR-KO mice displayed elevated hepatic Cyp2a5 (anti-obesity gene), aldo-keto reductase 1b7 (Akr1b7), glutathione-S-transferase M3 (Gstm3) (antioxidant gene), and AMP-activated protein kinase (AMPK) levels, contributing to protection against long-term HFD-induced obesity and inflammation. RNA sequencing analysis revealed a general blunting of the transcriptomic response to HFD in PXR-KO compared to WT mice. Pathway enrichment analysis demonstrated enrichment by HFD for several pathways, including oxidative stress and redox pathway, cholesterol biosynthesis, and glycolysis/gluconeogenesis in WT but not PXR-KO mice. In conclusion, this study provides new insights into the molecular mechanisms by which PXR deficiency protects against long-term HFD-induced severe obesity and its adverse effects in female mice.


Assuntos
Dieta Hiperlipídica , Fígado , Masculino , Feminino , Camundongos , Animais , Receptor de Pregnano X/genética , Receptor de Pregnano X/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Aumento de Peso , Obesidade/metabolismo , Inflamação/metabolismo , Camundongos Knockout
8.
Diabetes Obes Metab ; 26(6): 2158-2166, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38433703

RESUMO

AIM: Type 1 diabetes results from autoimmune events influenced by environmental variables, including changes in diet. This study investigated how feeding refined versus unrefined (aka 'chow') diets affects the onset and progression of hyperglycaemia in non-obese diabetic (NOD) mice. METHODS: Female NOD mice were fed either unrefined diets or matched refined low- and high-fat diets. The onset of hyperglycaemia, glucose tolerance, food intake, energy expenditure, circulating insulin, liver gene expression and microbiome changes were measured for each dietary group. RESULTS: NOD mice consuming unrefined (chow) diets developed hyperglycaemia at similar frequencies. By contrast, mice consuming the defined high-fat diet had an accelerated onset of hyperglycaemia compared to the matched low-fat diet. There was no change in food intake, energy expenditure, or physical activity within each respective dietary group. Microbiome changes were driven by diet type, with chow diets clustering similarly, while refined low- and high-fat bacterial diversity also grouped closely. In the defined dietary cohort, liver gene expression changes in high-fat-fed mice were consistent with a greater frequency of hyperglycaemia and impaired glucose tolerance. CONCLUSION: Glucose intolerance is associated with an enhanced frequency of hyperglycaemia in female NOD mice fed a defined high-fat diet. Using an appropriate matched control diet is an essential experimental variable when studying changes in microbiome composition and diet as a modifier of disease risk.


Assuntos
Diabetes Mellitus Tipo 1 , Dieta Hiperlipídica , Hiperglicemia , Camundongos Endogâmicos NOD , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/microbiologia , Camundongos , Hiperglicemia/etiologia , Intolerância à Glucose/etiologia , Metabolismo Energético , Fígado/metabolismo , Dieta com Restrição de Gorduras , Insulina/metabolismo , Insulina/sangue , Glicemia/metabolismo
9.
Small ; : e2310175, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38402424

RESUMO

Van der Waals semiconductors (vdWS) offer superior mechanical and electrical properties and are promising for flexible microelectronics when combined with polymer substrates. However, the self-passivated vdWS surfaces and their weak adhesion to polymers tend to cause interfacial sliding and wrinkling, and thus, are still challenging the reliability of vdWS-based flexible devices. Here, an effective covalent vdWS-polymer lamination method with high stretch tolerance and excellent electronic performance is reported. Using molybdenum disulfide (MoS2 )and polydimethylsiloxane (PDMS) as a case study, gold-chalcogen bonding and mercapto silane bridges are leveraged. The resulting composite structures exhibit more uniform and stronger interfacial adhesion. This enhanced coupling also enables the observation of a theoretically predicted tension-induced band structure transition in MoS2 . Moreover, no obvious degradation in the devices' structural and electrical properties is identified after numerous mechanical cycle tests. This high-quality lamination enhances the reliability of vdWS-based flexible microelectronics, accelerating their practical applications in biomedical research and consumer electronics.

10.
ACS Appl Mater Interfaces ; 16(7): 9144-9154, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38346142

RESUMO

We demonstrate direct-write patterning of single and multilayer MoS2 via a focused electron beam-induced etching (FEBIE) process mediated with the XeF2 precursor. MoS2 etching is performed at various currents, areal doses, on different substrates, and characterized using scanning electron and atomic force microscopies as well as Raman and photoluminescence spectroscopies. Scanning transmission electron microscopy reveals a sub-40 nm etching resolution and the progression of point defects and lateral etching of the consequent unsaturated bonds. The results confirm that the electron beam-induced etching process is minimally invasive to the underlying material in comparison to ion beam techniques, which damage the subsurface material. Single-layer MoS2 field-effect transistors are fabricated, and device characteristics are compared for channels that are edited via the selected area etching process. The source-drain current at constant gate and source-drain voltage scale linearly with the edited channel width. Moreover, the mobility of the narrowest channel width decreases, suggesting that backscattered and secondary electrons collaterally affect the periphery of the removed area. Focused electron beam doses on single-layer transistors below the etching threshold were also explored as a means to modify/thin the channel layer. The FEBIE exposures showed demonstrative effects via the transistor transfer characteristics, photoluminescence spectroscopy, and Raman spectroscopy. While strategies to minimize backscattered and secondary electron interactions outside of the scanned regions require further investigation, here, we show that FEBIE is a viable approach for selective nanoscale editing of MoS2 devices.

11.
bioRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38260502

RESUMO

Protein translation is an energy-intensive ribosome-driven process that is reduced during nutrient scarcity to conserve cellular resources. During prolonged starvation, cells selectively translate specific proteins to enhance their survival (adaptive translation); however, this process is poorly understood. Accordingly, we analyzed protein translation and mRNA transcription by multiple methods in vitro and in vivo to investigate adaptive hepatic translation during starvation. While acute starvation suppressed protein translation in general, proteomic analysis showed that prolonged starvation selectively induced translation of lysosome and autolysosome proteins. Significantly, the expression of the orphan nuclear receptor, estrogen-related receptor alpha (Esrra) increased during prolonged starvation and served as a master regulator of this adaptive translation by transcriptionally stimulating 60S acidic ribosomal protein P1 (Rplp1) gene expression. Overexpression or siRNA knockdown of Esrra expression in vitro or in vivo led to parallel changes in Rplp1 gene expression, lysosome/autophagy protein translation, and autophagy. Remarkably, we have found that Esrra had dual functions by not only regulating transcription but also controling adaptive translation via the Esrra/Rplp1/lysosome/autophagy pathway during prolonged starvation.

12.
Curr Diabetes Rev ; 20(1): e100323214554, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36896906

RESUMO

BACKGROUND: Over the past two decades, insulin glargine 100 U/mL (Gla-100) has emerged as the "standard of care" basal insulin for the management of type 1 diabetes mellitus (T1DM). Both formulations, insulin glargine 100 U/mL (Gla-100) and glargine 300 U/mL (Gla- 300) have been extensively studied against various comparator basal insulins across various clinical and real-world studies. In this comprehensive article, we reviewed the evidence on both insulin glargine formulations in T1DM across clinical trials and real-world studies. METHODS: Evidence in T1DM for Gla-100 and Gla-300 since their approvals in 2000 and 2015, respectively, were reviewed. RESULTS: Gla-100 when compared to the second-generation basal insulins, Gla-300 and IDeg-100, demonstrated a comparable risk of overall hypoglycemia, but the risk of nocturnal hypoglycemia was higher with Gla-100. Additional benefits of Gla-300 over Gla-100 include a prolonged (>24- hours) duration of action, a more stable glucose-lowering profile, improved treatment satisfaction, and greater flexibility in the dose administration timing. CONCLUSION: Both glargine formulations are largely comparable to other basal insulins in terms of glucose-lowering properties in T1DM. Further, risk of hypoglycemia is lower with Gla-100 than Neutral Protamine Hagedorn but comparable to insulin detemir.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Hipoglicemia , Humanos , Insulina Glargina/efeitos adversos , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hipoglicemiantes/efeitos adversos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glicemia , Hemoglobinas Glicadas , Hipoglicemia/induzido quimicamente , Glucose
13.
Endocr Pract ; 30(2): 128-134, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37984730

RESUMO

BACKGROUND: Once-weekly basal insulin icodec has been tested in clinical trials for efficacy and safety over currently available glargine-100 and degludec in different clinical settings for type 2 diabetes. We performed this meta-analysis to evaluate its overall safety and efficacy as compared to glargine-100 and degludec (nonicodec), from all available randomized controlled trials. METHODS: Seven trials comparing once-daily basal insulin analogs to once-weekly basal insulin icodec were included. Based on available information, outcomes in terms of HbA1c, fasting plasma glucose reduction, and increase in time in range (TIR) were compared. Side-effects were compared for overall hypoglycemia, severe hypoglycemia, and weight gain. The pooled effect size for continuously distributed data was measured as a reduction in "estimated differences in mean (with 95% CI)." For categorical data, the pooled effect size was measured as the Mantel-Haenszel risk ratio (with 95% CI). RESULTS: Analyzing against the nonicodec comparators together, the "estimated mean changes" in HbA1c and fasting plasma glucose favoring icodec were -0.22% (-0.35, -0.10) and -1.59 mg% (-9.26, 6.08) respectively. The "estimated mean increment" in weight for icodec was 0.64 kg (0.61, 0.67). The "estimated mean percentage" increment in TIR for icodec was 4.24% (2.99, 5.49). The Mantel-Haenszel risk ratios for all hypoglycemic events and severe hypoglycemia for icodec were 1.24 (1.02, 1.50) (P = .03) and 0.81 (0.31, 2.08) (P is not significant), respectively, suggesting a 24% increased incidence of all hypoglycemia with icodec. CONCLUSION: Once-weekly basal insulin icodec as compared to once-daily basal insulin analogs had a slight increase in the risk of overall hypoglycemia and weight gain, without any difference in severe hypoglycemia, with similar glycemic control (in terms of fasting plasma glucose, HbA1c, and TIR).


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemia , Insulina de Ação Prolongada , Humanos , Insulina Glargina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glicemia , Hemoglobinas Glicadas , Hipoglicemiantes/efeitos adversos , Hipoglicemia/induzido quimicamente , Hipoglicemia/epidemiologia , Hipoglicemia/tratamento farmacológico , Aumento de Peso , Insulina/uso terapêutico
14.
J Clin Endocrinol Metab ; 109(2): e562-e568, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37772731

RESUMO

BACKGROUND: Adrenal insufficiency (AI) in hemoglobin E (HbE)/beta thalassemia, including evaluation of mineralocorticoid axis, had not been studied. AIMS AND OBJECTIVES: In this study, we attempted to evaluate the prevalence of AI in HbE/beta thalassemia and wanted to determine if the prevalence of AI varied according to severity of HbE/beta thalassemia and transfusion requirements. METHODS: In this observational, cross-sectional study, 104 patients with HbE/beta thalassemia were evaluated. Among them, 57 and 47 were transfusion dependent and non-transfusion dependent. According to Mahidol criteria, patients were classified into mild (n = 39), moderate (n = 39), and severe (n = 26) disease. Early morning (8 Am) serum cortisol, plasma ACTH, and plasma aldosterone, renin were measured. Patients with baseline cortisol of 5 to 18 µg/dL underwent both 1 µg and 250 µg short Synacthen test. According to these results, patients were classified as having either normal, subclinical, or overt (primary/secondary) adrenal dysfunction. RESULTS: Adrenal insufficiency was found in 41% (n = 43). Among them 83.7% (n = 34) had primary AI and 16.3% (n = 9) had secondary AI. Thirty-three patients (31%) with normal or elevated ACTH and with low or normal aldosterone with high renin were diagnosed as having subclinical AI. There was no difference in prevalence of AI between transfusion dependent and non-transfusion dependent (P = .56) nor was there was any difference in prevalence of AI according to disease severity (P = .52). CONCLUSION: Adrenal insufficiency is common in HbE/beta thalassemia and is independent of transfusion dependency and disease severity.


Assuntos
Insuficiência Adrenal , Hemoglobina E , Talassemia beta , Humanos , Hidrocortisona , Talassemia beta/complicações , Talassemia beta/epidemiologia , Talassemia beta/terapia , Aldosterona , Estudos Transversais , Renina , Hormônio Adrenocorticotrópico , Insuficiência Adrenal/diagnóstico , Insuficiência Adrenal/epidemiologia , Insuficiência Adrenal/etiologia
15.
J ASEAN Fed Endocr Soc ; 38(2): 128-130, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38045663

RESUMO

Impaired awareness of hypoglycaemia (IAH) is present in around 25-40% of individuals with type 1 diabetes mellitus (T1DM). Herein, we present a case of an adolescent with T1DM and IAH who had worse corneal nerve parameters compared to a T1DM adolescent without IAH. Small fibre abnormalities detected by corneal confocal microscopy in an objective easy-to-perform non-invasive test might be a surrogate indicator of underlying autonomic dysfunction in T1DM and IAH.


Assuntos
Doenças do Sistema Nervoso Autônomo , Diabetes Mellitus Tipo 1 , Hipoglicemia , Humanos , Adolescente , Diabetes Mellitus Tipo 1/complicações , Córnea/diagnóstico por imagem , Microscopia Confocal
16.
Indian J Endocrinol Metab ; 27(5): 398-403, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107729

RESUMO

Introduction: A structured dedicated health programme for Type 1 diabetes mellitus (T1DM) has been initiated in the state of West Bengal, India. Aim: The aim is to provide comprehensive healthcare to all children, adolescents and young adults living with T1DM, along with the provision of free supply of insulin, glucose measuring devices, blood glucose test strips, and other logistics. The strategic framework for programme implementation is to utilise the infrastructure and manpower of the already existing non-communicable disease (NCD) clinic under National Health Mission. Methodology: Establishing dedicated T1DM clinics in each district hospital by utilising existing healthcare delivery systems, intensive training and hand-holding of named human resources; providing comprehensive healthcare service and structured diabetes education to all T1DM patients; and building an electronic registry of patients are important components of the programme. T1DM clinics run once a week on the same day throughout the state. All T1DM patients are treated with the correct dose of insulin, both human regular insulin and glargine insulin. Patients are routinely monitored monthly to ensure good glycaemic control and prevent complications of the disease. Routine anthropometric examination and required laboratory investigations are conducted in the set-up of the already existing NCD clinic. Ongoing monitoring and evaluation of the T1DM programme are being conducted in terms of glycated haemoglobin (HbA1c) values, growth and development, complication rates, psychological well-being, quality of life, and direct and indirect expenditure incurred by families. Through this programme, any bottlenecks or gaps in service delivery will be identified and corrective measures will be adopted to ensure better health outcomes for those living with T1DM.

17.
JCEM Case Rep ; 1(3): luad057, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37908579

RESUMO

An 18-year-old girl was evaluated for primary amenorrhea. She was diagnosed with hemoglobin E (HbE)/beta-thalassemia during childhood and needed blood transfusions every month to maintain adequate hemoglobin levels. She was started on thalidomide to reduce her transfusion requirements at 12 years of age and became transfusion independent after 6 months. She had normal stature and Tanner stage 4 sexual maturation, but she failed to attain menarche. Investigations revealed that she had elevated serum gonadotropin levels, indicating primary ovarian dysfunction. Her karyotype was 46,XX. Ultrasonographic examination demonstrated the absence of follicles in both ovaries. There was no evidence of abnormalities of the urogenital tract. Thalidomide was stopped, and she attained menarche spontaneously 3 months thereafter. Subsequently, her menstrual cycles were regular. Repeat ultrasound scans demonstrated the presence of ovarian follicles as well as an increase in ovarian volume. Mechanistic links between ovarian dysfunction and thalidomide remain to be found. One possibility is impaired blood flow and follicular development.

18.
Emerg Microbes Infect ; 12(2): 2256416, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37672505

RESUMO

The emergence of novel betacoronaviruses has posed significant financial and human health burdens, necessitating the development of appropriate tools to combat future outbreaks. In this study, we have characterized a human cell line, IGROV-1, as a robust tool to detect, propagate, and titrate betacoronaviruses SARS-CoV-2 and HCoV-OC43. IGROV-1 cells can be used for serological assays, antiviral drug testing, and isolating SARS-CoV-2 variants from patient samples. Using time-course transcriptomics, we confirmed that IGROV-1 cells exhibit a robust innate immune response upon SARS-CoV-2 infection, recapitulating the response previously observed in primary human nasal epithelial cells. We performed genome-wide CRISPR knockout genetic screens in IGROV-1 cells and identified Aryl hydrocarbon receptor (AHR) as a critical host dependency factor for both SARS-CoV-2 and HCoV-OC43. Using DiMNF, a small molecule inhibitor of AHR, we observed that the drug selectively inhibits HCoV-OC43 infection but not SARS-CoV-2. Transcriptomic analysis in primary normal human bronchial epithelial cells revealed that DiMNF blocks HCoV-OC43 infection via basal activation of innate immune responses. Our findings highlight the potential of IGROV-1 cells as a valuable diagnostic and research tool to combat betacoronavirus diseases.


Assuntos
COVID-19 , Coronavirus Humano OC43 , Humanos , Coronavirus Humano OC43/genética , SARS-CoV-2 , Receptores de Hidrocarboneto Arílico/genética , Linhagem Celular
19.
Physiol Genomics ; 55(11): 517-543, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37661925

RESUMO

Submaximal exercise capacity is an indicator of cardiorespiratory fitness with clinical and public health implications. Submaximal exercise capacity and its response to exercise programs are characterized by heritability levels of about 40%. Using physical working capacity (power output) at a heart rate of 150 beats/min (PWC150) as an indicator of submaximal exercise capacity in subjects of the HERITAGE Family Study, we have undertaken multi-omics and in silico explorations of the underlying biology of PWC150 and its response to 20 wk of endurance training. Our goal was to illuminate the biological processes and identify panels of genes associated with human variability in intrinsic PWC150 (iPWC150) and its trainability (dPWC150). Our bioinformatics approach was based on a combination of genome-wide association, skeletal muscle gene expression, and plasma proteomics and metabolomics experiments. Genes, proteins, and metabolites showing significant associations with iPWC150 or dPWC150 were further queried for the enrichment of biological pathways. We compared genotype-phenotype associations of emerging candidate genes with reported functional consequences of gene knockouts in mouse models. We investigated the associations between DNA variants and multiple muscle and cardiovascular phenotypes measured in HERITAGE subjects. Two panels of prioritized genes of biological relevance to iPWC150 (13 genes) and dPWC150 (6 genes) were identified, supporting the hypothesis that genes and pathways associated with iPWC150 are different from those underlying dPWC150. Finally, the functions of these genes and pathways suggested that human variation in submaximal exercise capacity is mainly driven by skeletal muscle morphology and metabolism and red blood cell oxygen-carrying capacity.NEW & NOTEWORTHY Multi-omics and in silico explorations of the genes and underlying biology of submaximal exercise capacity and its response to 20 wk of endurance training were undertaken. Prioritized genes were identified: 13 genes for variation in submaximal exercise capacity in the sedentary state and 5 genes for the response level to endurance training, with no overlap between them. Genes and pathways associated with submaximal exercise capacity in the sedentary state are different from those underlying trainability.


Assuntos
Exercício Físico , Estudo de Associação Genômica Ampla , Camundongos , Animais , Humanos , Exercício Físico/fisiologia , Fenótipo , Genoma , Biologia , Resistência Física/genética , Consumo de Oxigênio/genética
20.
Nanomaterials (Basel) ; 13(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37630917

RESUMO

Transition metal dichalcogenides (TMDs)-based field-effect transistors (FETs) are being investigated vigorously for their promising applications in optoelectronics. Despite the high optical response reported in the literature, most of them are studied at room temperature. To extend the application of these materials in a photodetector, particularly at a low temperature, detailed understanding of the photo response behavior of these materials at low temperatures is crucial. Here we present a systematic investigation of temperature-dependent electronic and optoelectronic properties of few-layers MoS2 FETs, synthesized using the mechanical exfoliation of bulk MoS2 crystal, on the Si/SiO2 substrate. Our MoS2 FET show a room-temperature field-effect mobility µFE ~40 cm2·V-1·s-1, which increases with decreasing temperature, stabilizing at 80 cm2·V-1·s-1 below 100 K. The temperature-dependent (50 K < T < 300 K) photoconductivity measurements were investigated using a continuous laser source λ = 658 nm (E = 1.88 eV) over a broad range of effective illuminating laser intensity, Peff (0.02 µW < Peff < 0.6 µW). Photoconductivity measurements indicate a fractional power dependence of the steady-state photocurrent. The room-temperature photoresponsivity (R) obtained in these samples was found to be ~2 AW-1, and it increases as a function of decreasing temperature, reaching a maximum at T = 75 K. The optoelectronic properties of MoS2 at a low temperature give an insight into photocurrent generation mechanisms, which will help in altering/improving the performance of TMD-based devices for various applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA