Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Hepatology ; 79(5): 986-1004, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37976384

RESUMO

BACKGROUND AND AIMS: Parenteral nutrition-associated cholestasis (PNAC) is an important complication in patients with intestinal failure with reduced LRH-1 expression. Here, we hypothesized that LRH-1 activation by its agonist, dilauroylphosphatidylcholine (DLPC), would trigger signal transducer and activator of transcription 6 (STAT6) signaling and hepatic macrophage polarization that would mediate hepatic protection in PNAC. APPROACH AND RESULTS: PNAC mouse model (oral DSSx4d followed by PNx14d; DSS-PN) was treated with LRH-1 agonist DLPC (30 mg/kg/day) intravenously. DLPC treatment prevented liver injury and cholestasis while inducing hepatic mRNA expression of Nr5a2 (nuclear receptor subfamily 5 group A member 2), Abcb11 (ATP binding cassette subfamily B member 11), Abcg5 (ATP-binding cassette [ABC] transporters subfamily G member 5), Abcg8 (ATP-binding cassette [ABC] transporters subfamily G member 8), nuclear receptor subfamily 0, and ATP-binding cassette subfamily C member 2 ( Abcc2) mRNA, all of which were reduced in PNAC mice. To determine the mechanism of the DLPC effect, we performed RNA-sequencing analysis of the liver from Chow, DSS-PN, and DSS-PN/DLPC mice, which revealed DLPC upregulation of the anti-inflammatory STAT6 pathway. In intrahepatic mononuclear cells or bone-marrow derived macrophages (BMDM) from PNAC mice, DLPC treatment prevented upregulation of pro-inflammatory (M1) genes, suppressed activation of NFκB and induced phosphorylation of STAT6 and its target genes, indicating M2 macrophage polarization. In vitro, incubation of DLPC with cultured macrophages showed that the increased Il-1b and Tnf induced by exposure to lipopolysaccharides or phytosterols was reduced significantly, which was associated with increased STAT6 binding to promoters of its target genes. Suppression of STAT6 expression by siRNA in THP-1 cells exposed to lipopolysaccharides, phytosterols, or both resulted in enhanced elevation of IL-1B mRNA expression. Furthermore, the protective effect of DLPC in THP-1 cells was abrogated by STAT6 siRNA. CONCLUSIONS: These results indicate that activation of LRH-1 by DLPC may protect from PNAC liver injury through STAT6-mediated macrophage polarization.


Assuntos
Colestase , Fosfatidilcolinas , Fitosteróis , Humanos , Camundongos , Animais , Lipoproteínas/metabolismo , Fator de Transcrição STAT6/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Colestase/etiologia , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Células de Kupffer/metabolismo , RNA Interferente Pequeno , RNA Mensageiro/metabolismo , Nutrição Parenteral/efeitos adversos , Trifosfato de Adenosina
3.
Sci Rep ; 13(1): 7752, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173326

RESUMO

Prolonged parenteral nutrition (PN) can lead to PN associated cholestasis (PNAC). Intestinally derived lipopolysaccharides and infused PN phytosterols lead to activation of NFκB, a key factor in PNAC. Our objective was to determine if inhibition of HNF4α could interfere with NFκB to alleviate murine PNAC. We showed that HNF4α antagonist BI6015 (20 mg/kg/day) in DSS-PN (oral DSS x4d followed by Total PN x14d) mice prevented the increased AST, ALT, bilirubin and bile acids and reversed mRNA suppression of hepatocyte Abcg5/8, Abcb11, FXR, SHP and MRP2 that were present during PNAC. Further, NFκB phosphorylation in hepatocytes and its binding to LRH-1 and BSEP promoters in liver, which are upregulated in DSS-PN mice, were inhibited by BI6015 treatment. BI6015 also prevented the upregulation in liver macrophages of Adgre1 (F4/80) and Itgam (CD11B) that occurs in DSS-PN mice, with concomitant induction of anti-inflammatory genes (Klf2, Klf4, Clec7a1, Retnla). In conclusion, HNF4α antagonism attenuates PNAC by suppressing NFκB activation and signaling while inducing hepatocyte FXR and LRH-1 and their downstream bile and sterol transporters. These data identify HNF4α antagonism as a potential therapeutic target for prevention and treatment of PNAC.


Assuntos
Colestase , Camundongos , Animais , Colestase/metabolismo , Fígado/metabolismo , Benzimidazóis/metabolismo , Nutrição Parenteral , NF-kappa B/metabolismo
4.
Hepatol Commun ; 7(3): e0056, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36848082

RESUMO

BACKGROUND AND AIMS: Parenteral nutrition (PN) in patients with intestinal failure can lead to cholestasis (PNAC). In a PNAC mouse model, farnesoid X receptor (FXR) agonist (GW4064) treatment alleviated IL-1ß-dependent cholestatic liver injury. The objective of this study was to determine whether this hepatic protection of FXR activation is mediated through IL-6-STAT3 signaling. APPROACH AND RESULTS: Hepatic apoptotic pathways [Fas-associated protein with death domain (Fas) mRNA, caspase 8 protein, and cleaved caspase 3] and IL-6-STAT3 signaling, and expression of its downstream effectors Socs1/3 were all upregulated in the mouse PNAC model (dextran sulfate sodium enterally × 4 d followed by total PN for 14 d). Il1r-/- mice were protected from PNAC in conjunction with suppression of the FAS pathway. GW4064 treatment in the PNAC mouse increased hepatic FXR binding to the Stat3 promoter, further increased STAT3 phosphorylation and upregulated Socs1 and Socs3 mRNA, and prevented cholestasis. In HepG2 cells and primary mouse hepatocytes, IL-1ß induced IL-6 mRNA and protein, which were suppressed by GW4064. In IL-1ß or phytosterols treated HepG2 and Huh7 cells, siRNA knockdown of STAT3 significantly reduced GW4064-upregulated transcription of hepatoprotective nuclear receptor subfamily 0, group B, member 2 (NR0B2) and ABCG8. CONCLUSIONS: STAT3 signaling mediated in part the protective effects of GW4064 in the PNAC mouse, and in HepG2 cells and hepatocytes exposed to either IL-1ß or phytosterols, 2 factors critical in PNAC pathogenesis. These data demonstrate that FXR agonists may mediate hepatoprotective effects in cholestasis by inducing STAT3 signaling.


Assuntos
Colestase , Interleucina-6 , Animais , Camundongos , Interleucina-6/genética , Transdução de Sinais , RNA Interferente Pequeno , Hepatócitos , Modelos Animais de Doenças
5.
Hepatology ; 75(2): 252-265, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34387888

RESUMO

BACKGROUND AND AIMS: Parenteral nutrition (PN)-associated cholestasis (PNAC) complicates the care of patients with intestinal failure. In PNAC, phytosterol containing PN synergizes with intestinal injury and IL-1ß derived from activated hepatic macrophages to suppress hepatocyte farnesoid X receptor (FXR) signaling and promote PNAC. We hypothesized that pharmacological activation of FXR would prevent PNAC in a mouse model. APPROACH AND RESULTS: To induce PNAC, male C57BL/6 mice were subjected to intestinal injury (2% dextran sulfate sodium [DSS] for 4 days) followed by central venous catheterization and 14-day infusion of PN with or without the FXR agonist GW4064. Following sacrifice, hepatocellular injury, inflammation, and biliary and sterol transporter expression were determined. GW4064 (30 mg/kg/day) added to PN on days 4-14 prevented hepatic injury and cholestasis; reversed the suppressed mRNA expression of nuclear receptor subfamily 1, group H, member 4 (Nr1h4)/FXR, ATP-binding cassette subfamily B member 11 (Abcb11)/bile salt export pump, ATP-binding cassette subfamily C member 2 (Abcc2), ATP binding cassette subfamily B member 4(Abcb4), and ATP-binding cassette subfamily G members 5/8(Abcg5/8); and normalized serum bile acids. Chromatin immunoprecipitation of liver showed that GW4064 increased FXR binding to the Abcb11 promoter. Furthermore, GW4064 prevented DSS-PN-induced hepatic macrophage accumulation, hepatic expression of genes associated with macrophage recruitment and activation (ll-1b, C-C motif chemokine receptor 2, integrin subunit alpha M, lymphocyte antigen 6 complex locus C), and hepatic macrophage cytokine transcription in response to lipopolysaccharide in vitro. In primary mouse hepatocytes, GW4064 activated transcription of FXR canonical targets, irrespective of IL-1ß exposure. Intestinal inflammation and ileal mRNAs (Nr1h4, Fgf15, and organic solute transporter alpha) were not different among groups, supporting a liver-specific effect of GW4064 in this model. CONCLUSIONS: GW4064 prevents PNAC in mice through restoration of hepatic FXR signaling, resulting in increased expression of canalicular bile and of sterol and phospholipid transporters and suppression of macrophage recruitment and activation. These data support augmenting FXR activity as a therapeutic strategy to alleviate or prevent PNAC.


Assuntos
Colestase/prevenção & controle , Expressão Gênica/efeitos dos fármacos , Isoxazóis/farmacologia , Nutrição Parenteral/efeitos adversos , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/genética , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Ácidos e Sais Biliares/sangue , Colestase/etiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/metabolismo , Interleucina-1beta/farmacologia , Enteropatias/induzido quimicamente , Enteropatias/terapia , Isoxazóis/uso terapêutico , Lipoproteínas/genética , Hepatopatias/etiologia , Hepatopatias/patologia , Hepatopatias/prevenção & controle , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 2 Associada à Farmacorresistência Múltipla/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , RNA Mensageiro/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Sci Rep ; 11(1): 18999, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556771

RESUMO

Growth hormone (GH) is one of the critical factors in maintaining glucose metabolism. B-cell translocation gene 2 (BTG2) and yin yang 1 (YY1) are key regulators of diverse metabolic processes. In this study, we investigated the link between GH and BTG2-YY1 signaling pathway in glucose metabolism. GH treatment elevated the expression of hepatic Btg2 and Yy1 in primary mouse hepatocytes and mouse livers. Glucose production in primary mouse hepatocytes and serum blood glucose levels were increased during GH exposure. Overexpression of hepatic Btg2 and Yy1 induced key gluconeogenic enzymes phosphoenolpyruvate carboxykinase 1 (PCK1) and glucose-6 phosphatase (G6PC) as well as glucose production in primary mouse hepatocytes, whereas this phenomenon was markedly diminished by knockdown of Btg2 and Yy1. Here, we identified the YY1-binding site on the Pck1 and G6pc gene promoters using reporter assays and point mutation analysis. The regulation of hepatic gluconeogenic genes induced by GH treatment was clearly linked with YY1 recruitment on gluconeogenic gene promoters. Overall, this study demonstrates that BTG2 and YY1 are novel regulators of GH-dependent regulation of hepatic gluconeogenic genes and glucose production. BTG2 and YY1 may be crucial therapeutic targets to intervene in metabolic dysfunction in response to the GH-dependent signaling pathway.


Assuntos
Gluconeogênese/genética , Hormônio do Crescimento/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Fator de Transcrição YY1/metabolismo , Animais , Linhagem Celular , Glucose/biossíntese , Glucose-6-Fosfatase/genética , Glucose-6-Fosfatase/metabolismo , Hormônio do Crescimento/administração & dosagem , Hepatócitos , Humanos , Injeções Intraperitoneais , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Modelos Animais , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Mutação Puntual , Cultura Primária de Células , Regiões Promotoras Genéticas , Transdução de Sinais/genética
7.
Hepatology ; 74(6): 3284-3300, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34310734

RESUMO

BACKGROUND AND AIMS: Chronically administered parenteral nutrition (PN) in patients with intestinal failure carries the risk for developing PN-associated cholestasis (PNAC). We have demonstrated that farnesoid X receptor (FXR) and liver X receptor (LXR), proinflammatory interleukin-1 beta (IL-1ß), and infused phytosterols are important in murine PNAC pathogenesis. In this study we examined the role of nuclear receptor liver receptor homolog 1 (LRH-1) and phytosterols in PNAC. APPROACH AND RESULTS: In a C57BL/6 PNAC mouse model (dextran sulfate sodium [DSS] pretreatment followed by 14 days of PN; DSS-PN), hepatic nuclear receptor subfamily 5, group A, member 2/LRH-1 mRNA, LRH-1 protein expression, and binding of LRH-1 at the Abcg5/8 and Cyp7a1 promoter was reduced. Interleukin-1 receptor-deficient mice (Il-1r-/- /DSS-PN) were protected from PNAC and had significantly increased hepatic mRNA and protein expression of LRH-1. NF-κB activation and binding to the LRH-1 promoter were increased in DSS-PN PNAC mice and normalized in Il-1r-/- /DSS-PN mice. Knockdown of NF-κB in IL-1ß-exposed HepG2 cells increased expression of LRH-1 and ABCG5. Treatment of HepG2 cells and primary mouse hepatocytes with an LRH-1 inverse agonist, ML179, significantly reduced mRNA expression of FXR targets ATP binding cassette subfamily C member 2/multidrug resistance associated protein 2 (ABCC2/MRP2), nuclear receptor subfamily 0, groupB, member 2/small heterodimer partner (NR0B2/SHP), and ATP binding cassette subfamily B member 11/bile salt export pump (ABCB11/BSEP). Co-incubation with phytosterols further reduced expression of these genes. Similar results were obtained by suppressing the LRH-1 targets ABCG5/8 by treatment with small interfering RNA, IL-1ß, or LXR antagonist GSK2033. Liquid chromatography-mass spectrometry and chromatin immunoprecipitation experiments in HepG2 cells showed that ATP binding cassette subfamily G member 5/8 (ABCG5/8) suppression by GSK2033 increased the accumulation of phytosterols and reduced binding of FXR to the SHP promoter. Finally, treatment with LRH-1 agonist, dilauroyl phosphatidylcholine (DLPC) protected DSS-PN mice from PNAC. CONCLUSIONS: This study suggests that NF-κB regulation of LRH-1 and downstream genes may affect phytosterol-mediated antagonism of FXR signaling in the pathogenesis of PNAC. LRH-1 could be a potential therapeutic target for PNAC.


Assuntos
Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Colestase/etiologia , Lipoproteínas/metabolismo , NF-kappa B/metabolismo , Nutrição Parenteral/efeitos adversos , Fitosteróis/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Colestase/metabolismo , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Cromatografia Gasosa-Espectrometria de Massas , Técnicas de Silenciamento de Genes , Células Hep G2 , Humanos , Camundongos , Camundongos Endogâmicos C57BL
8.
BMB Rep ; 54(4): 221-226, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33795032

RESUMO

Hepcidin (HAMP) is synthesized in the liver. It is a key ironregulatory hormone that controls systemic iron homeostasis. Cereblon (CRBN) and Kruppel-like factor 15 (KLF15) are known to regulate diverse physiological functions. In this study, we investigated the role of CRBN on hepatic hepcidin gene expression and production under gluconeogenic stimuli. Fasted mice as well as forskolin (FSK)- and glucagon (GLU)-treated mice had reduced serum iron levels but increased expression levels of hepatic Crbn and Klf15 and hepcidin secretion. MicroRNA (miRNA) expression analysis of fasted and Ad-Crbninfected mice revealed significant reduction of microRNA-639 (miR-639). Hepatic overexpression of Crbn elevated hepcidin expression and production along with Klf15 gene expression, whereas knockdown of Crbn and Klf15 markedly decreased FSK- and fasting-mediated induction of hepcidin gene expression and its biosynthesis in mouse livers and primary hepatocytes. Moreover, expression of KLF15 significantly increased the activity of hepcidin reporter gene. It was exclusively dependent on the KLF15-binding site identified within the hepcidin gene promoter. Overall, this study demonstrates that CRBN and KLF15 are novel mediators of gluconeogenic signal-induced hepcidin gene expression and production. Thus, CRBN and KLF15 might be novel potential therapeutic targets to intervene metabolic dysfunction. [BMB Reports 2021; 54(4): 221-226].


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hepcidinas/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Hepcidinas/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Camundongos
9.
Nat Commun ; 9(1): 1393, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29643332

RESUMO

In infants intolerant of enteral feeding because of intestinal disease, parenteral nutrition may be associated with cholestasis, which can progress to end-stage liver disease. Here we show the function of hepatic macrophages and phytosterols in parenteral nutrition-associated cholestasis (PNAC) pathogenesis using a mouse model that recapitulates the human pathophysiology and combines intestinal injury with parenteral nutrition. We combine genetic, molecular, and pharmacological approaches to identify an essential function of hepatic macrophages and IL-1ß in PNAC. Pharmacological antagonism of  IL-1 signaling or genetic deficiency in CCR2, caspase-1 and caspase-11, or IL-1 receptor (which binds both IL-1α and IL-1ß) prevents PNAC in mice. IL-1ß increases hepatocyte NF-κB signaling, which interferes with farnesoid X receptor and liver X receptor bonding to respective promoters of canalicular bile and sterol transporter genes (Abcc2, Abcb11, and Abcg5/8), resulting in transcriptional suppression and subsequent cholestasis. Thus, hepatic macrophages, IL-1ß, or NF-κB may be targets for restoring bile and sterol transport to treat PNAC.


Assuntos
Colestase/genética , Interleucina-1beta/genética , Fígado/imunologia , Macrófagos/imunologia , NF-kappa B/genética , Receptores CCR2/genética , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/imunologia , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/imunologia , Animais , Caspase 1/genética , Caspase 1/imunologia , Caspases/genética , Caspases/imunologia , Caspases Iniciadoras , Colestase/etiologia , Colestase/imunologia , Colestase/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hepatócitos/imunologia , Hepatócitos/patologia , Humanos , Recém-Nascido , Interleucina-1beta/imunologia , Lipoproteínas/genética , Lipoproteínas/imunologia , Fígado/patologia , Receptores X do Fígado/genética , Receptores X do Fígado/imunologia , Macrófagos/patologia , Masculino , Camundongos , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/imunologia , NF-kappa B/imunologia , Nutrição Parenteral/efeitos adversos , Receptores CCR2/deficiência , Receptores CCR2/imunologia , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/imunologia , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/imunologia , Transdução de Sinais
10.
Proc Natl Acad Sci U S A ; 111(16): E1581-90, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24711389

RESUMO

Identification of genes associated with specific biological phenotypes is a fundamental step toward understanding the molecular basis underlying development and pathogenesis. Although RNAi-based high-throughput screens are routinely used for this task, false discovery and sensitivity remain a challenge. Here we describe a computational framework for systematic integration of published gene expression data to identify genes defining a phenotype of interest. We applied our approach to rank-order all genes based on their likelihood of determining ES cell (ESC) identity. RNAi-mediated loss-of-function experiments on top-ranked genes unearthed many novel determinants of ESC identity, thus validating the derived gene ranks to serve as a rich and valuable resource for those working to uncover novel ESC regulators. Underscoring the value of our gene ranks, functional studies of our top-hit Nucleolin (Ncl), abundant in stem and cancer cells, revealed Ncl's essential role in the maintenance of ESC homeostasis by shielding against differentiation-inducing redox imbalance-induced oxidative stress. Notably, we report a conceptually novel mechanism involving a Nucleolin-dependent Nanog-p53 bistable switch regulating the homeostatic balance between self-renewal and differentiation in ESCs. Our findings connect the dots on a previously unknown regulatory circuitry involving genes associated with traits in both ESCs and cancer and might have profound implications for understanding cell fate decisions in cancer stem cells. The proposed computational framework, by helping to prioritize and preselect candidate genes for tests using complex and expensive genetic screens, provides a powerful yet inexpensive means for identification of key cell identity genes.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Homeostase/genética , Animais , Diferenciação Celular/genética , Proliferação de Células , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Camundongos , Proteína Homeobox Nanog , Estresse Oxidativo/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Interferência de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reprodutibilidade dos Testes , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Nucleolina
11.
Nucleic Acids Res ; 40(8): 3364-77, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22210859

RESUMO

The TET family of FE(II) and 2-oxoglutarate-dependent enzymes (Tet1/2/3) promote DNA demethylation by converting 5-methylcytosine to 5-hydroxymethylcytosine (5hmC), which they further oxidize into 5-formylcytosine and 5-carboxylcytosine. Tet1 is robustly expressed in mouse embryonic stem cells (mESCs) and has been implicated in mESC maintenance. Here we demonstrate that, unlike genetic deletion, RNAi-mediated depletion of Tet1 in mESCs led to a significant reduction in 5hmC and loss of mESC identity. The differentiation phenotype due to Tet1 depletion positively correlated with the extent of 5hmC loss. Meta-analyses of genomic data sets suggested interaction between Tet1 and leukemia inhibitory factor (LIF) signaling. LIF signaling is known to promote self-renewal and pluripotency in mESCs partly by opposing MAPK/ERK-mediated differentiation. Withdrawal of LIF leads to differentiation of mESCs. We discovered that Tet1 depletion impaired LIF-dependent Stat3-mediated gene activation by affecting Stat3's ability to bind to its target sites on chromatin. Nanog overexpression or inhibition of MAPK/ERK signaling, both known to maintain mESCs in the absence of LIF, rescued Tet1 depletion, further supporting the dependence of LIF/Stat3 signaling on Tet1. These data support the conclusion that analysis of mESCs in the hours/days immediately following efficient Tet1 depletion reveals Tet1's normal physiological role in maintaining the pluripotent state that may be subject to homeostatic compensation in genetic models.


Assuntos
Citosina/análogos & derivados , Proteínas de Ligação a DNA/fisiologia , Células-Tronco Embrionárias/enzimologia , Fator Inibidor de Leucemia/metabolismo , Proteínas Proto-Oncogênicas/fisiologia , Fator de Transcrição STAT3/metabolismo , 5-Metilcitosina/análogos & derivados , Animais , Células Cultivadas , Citosina/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Proteína Homeobox Nanog , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Interferência de RNA , Transdução de Sinais , DNA Metiltransferase 3B
12.
Virol J ; 8: 67, 2011 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-21314961

RESUMO

BACKGROUND: Human metapneumovirus (hMPV) is associated with the acute respiratory tract infection (ARTI) in all the age groups. However, there is limited information on prevalence and genetic diversity of human metapneumovirus (hMPV) strains circulating in India. OBJECTIVE: To study prevalence and genomic diversity of hMPV strains among ARTI patients reporting in outpatient departments of hospitals in Kolkata, Eastern India. METHODS: Nasal and/or throat swabs from 2309 patients during January 2006 to December 2009, were screened for the presence of hMPV by RT-PCR of nucleocapsid (N) gene. The G and F genes of representative hMPV positive samples were sequenced. RESULTS: 118 of 2309 (5.11%) clinical samples were positive for hMPV. The majority (≈80%) of the positive cases were detected during July-November all through the study period. Genetic analysis revealed that 77% strains belong to A2 subgroup whereas rest clustered in B1 subgroup. G sequences showed higher diversity at the nucleotide and amino acid level. In contrast, less than 10% variation was observed in F gene of representative strains of all four years. Sequence analysis also revealed changes in the position of stop codon in G protein, which resulted in variable length (217-231 aa) polypeptides. CONCLUSION: The study suggests that approximately 5% of ARTI in the region were caused by hMPV. This is the first report on the genetic variability of G and F gene of hMPV strains from India which clearly shows that the G protein of hMPV is continuously evolving. Though the study partially fulfills lacunae of information, further studies from other regions are necessary for better understanding of prevalence, epidemiology and virus evolution in Indian subcontinent.


Assuntos
Variação Genética , Glicoproteínas/genética , Metapneumovirus/classificação , Metapneumovirus/genética , Infecções por Paramyxoviridae/epidemiologia , Infecções por Paramyxoviridae/virologia , Proteínas Virais de Fusão/genética , Proteínas Virais/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Índia/epidemiologia , Lactente , Masculino , Metapneumovirus/isolamento & purificação , Pessoa de Meia-Idade , Epidemiologia Molecular , Dados de Sequência Molecular , Mucosa Nasal/virologia , Faringe/virologia , Filogenia , Prevalência , RNA Viral/genética , Análise de Sequência de DNA , Adulto Jovem
13.
Infect Genet Evol ; 10(8): 1188-98, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20678590

RESUMO

Influenza surveillance was implemented in Kolkata, eastern India in 2005 to identify the circulating subtypes and characterize their genetic diversity. Throat and nasal swabs were collected from outpatients with influenza-like illness (ILI). Of 2844 ILI cases identified at two referral hospitals during October 2005-September 2009, 309 (10.86%) were positive for Influenza A by real time RT-PCR, of which 110 (35.60%) were subtyped as H1N1 and 199 (64.40%) as H3N2. Comparison of the nucleotide (nt) and amino acid (aa) sequences of the HA1 gene for H1N1 and H3N2 strains showed that a subset of strains precede WHO recommended contemporary strains by 1-2 years. The Kolkata H1N1 strains clustered in Clade II, subgroup 2B with A/Brisbane/59/2007 but were distant from the corresponding vaccine strains (New Caledonia/20/99 and A/Solomon Island/3/06). The 2005-06 and 2007 H3N2 strains (15/17) clustered either A/Brisbane/10/2007-like (n=8) or A/Nepal/921/2006 like (n=7) strains, whereas 2008 strains (8/12) and 2009 strains (4/4) were similar to the 2010-11 vaccine strain A/Perth/16/2009. More aa substitutions were found in HA or NA genes of H3N2 than in H1N1 strains. No mutation conferring neuraminidase resistance was observed in any of the strain during 2005-08, however in 2009, drug resistant marker (H275Y) was present in seasonal H1N1, but not in co-circulating H3N2 strains. This is the first report of genetic characterization of circulating Influenza A strains from India. The results also highlight the importance of continuing Influenza surveillance in developing countries of Asia for monitoring unusual strains with pandemic potential and mutations conferring antiviral resistance.


Assuntos
Antivirais/farmacologia , Variação Genética , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/virologia , Oseltamivir/farmacologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Antivirais/uso terapêutico , Sequência de Bases , Farmacorresistência Viral , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Índia , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Humana/tratamento farmacológico , Influenza Humana/epidemiologia , Dados de Sequência Molecular , Neuraminidase/química , Neuraminidase/genética , Filogenia , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA , Proteínas Virais/genética
14.
Mol Biol Rep ; 37(3): 1335-40, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19319663

RESUMO

Escherichia coli BL21 (DE3) is commonly used for the overproduction of fusion proteins. Using this system, we recently reported the overproduction of histidine-tagged mouse estrogen receptor (ER) alpha-ligand binding domain as an intact 30 kD protein and its inhibitory effect on the growth of bacteria. However, when GST-tagged mouse ERalpha transactivation domain (TAD) was overproduced using this system, it showed no effect on the growth of bacteria but was specifically degraded during its expression and purification. Here we report the expression of 47 kD GST-tagged mouse ERalpha-TAD protein, which was degraded partially and specifically into 46 and 43 kD fragments. This fusion protein was further degraded into 37, 31, 29 and 26 kD fragments during its purification by affinity chromatography. Such specific degradation of GST-tagged mouse ERalpha-TAD during its overproduction in E. coli and purification indicates the induction of specific protease and suggests the modification of expression system.


Assuntos
Escherichia coli/metabolismo , Receptor alfa de Estrogênio/metabolismo , Transativadores/metabolismo , Animais , Cromatografia de Afinidade , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/isolamento & purificação , Immunoblotting , Camundongos , Peso Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transativadores/química , Transativadores/isolamento & purificação
15.
Neurosci Lett ; 464(3): 218-21, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19715742

RESUMO

In the previous paper, we reported that four proteins of 100 kDa, 80 kDa, 68 kDa and 50 kDa from the mouse brain interacted with estrogen receptor (ER) alpha-transactivation domain (TAD) and 68 kDa protein showed age and sex dependent changes. Here, we describe the identification of 50 kDa protein as beta-tubulin and changes in its interaction with age and sex in mouse brain. It is a microtubule-associated protein which binds to activation function (AF)-1 region of ERalpha-TAD and is involved in estrogen signaling. The extent of interaction of mouse ERalpha-TAD with beta-tubulin was higher in adult female as compared to old female and adult male. However, the expression of beta-tubulin showed no significant change with age and sex. Such age and sex dependent alteration in the interaction of beta-tubulin might account for the estrogen-mediated brain functions during aging.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Receptor alfa de Estrogênio/metabolismo , Tubulina (Proteína)/metabolismo , Animais , Eletroforese em Gel de Poliacrilamida , Receptor alfa de Estrogênio/genética , Feminino , Immunoblotting , Imunoprecipitação , Masculino , Camundongos , Peso Molecular , Estrutura Terciária de Proteína , Fatores Sexuais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ativação Transcricional
16.
J Neurosci Res ; 87(11): 2591-600, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19326447

RESUMO

After the interaction of estrogen with the ligand binding domain (LBD) of mouse estrogen receptor-alpha (mERalpha) and hormone-responsive elements of target genes, many nuclear proteins are recruited to regulate the expression of specific genes. Because it is not known which brain proteins interact with LBD or whether these proteins vary with age and sex, we used pull-down assay and far Western blotting to detect five nuclear proteins of 160, 140, 87, 60, and 46 kD in the mouse brain. These interacting proteins were identified as PELP1, RIP140, PGC1alpha, BAF60, and ADA3, respectively. The level of PELP1, RIP140, PGC1alpha, and BAF60 decreased drastically in old compared with adult male mice, whereas the ADA3 level showed no significant change. PELP1, PGC1alpha, and BAF60 levels were lower in old male compared with female mice. Thus we report the identification and interaction of five nuclear proteins with mERalpha-LBD, indicating their role in estrogen signaling and brain functions during aging.


Assuntos
Envelhecimento , Encéfalo/metabolismo , Receptor alfa de Estrogênio/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Sítios de Ligação , Western Blotting , Receptor alfa de Estrogênio/química , Feminino , Imunoprecipitação , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos AKR , Proteína 1 de Interação com Receptor Nuclear , Estrutura Terciária de Proteína , Caracteres Sexuais
17.
J Neurosci Res ; 87(6): 1323-8, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19025768

RESUMO

Estrogen receptor (ER)-alpha interacts with nuclear proteins to mediate its multiple functions in the brain. However, it is not known which proteins interact with the ERalpha-transactivation domain (TAD) in mouse brain and whether they change with age and sex. Therefore, we have used affinity-purified GST-tagged mouse ERalpha-TAD fusion protein for interaction with nuclear proteins from the mouse brain. The pull-down assay and far-Western blotting detected four nuclear proteins of 100, 80, 68, and 50 kD. We have recently identified the 80-kD protein as MTA1 and demonstrated its decrease in old age. Here we report alteration in the interaction and expression of the 68-kD protein of adult and old mice of both sexes. This protein was identified as p68 RNA helicase through NCBI database search, immunoprecipitation, and immunoblotting. Further analysis showed that the extent of its interaction was relatively lower in old mice of both sexes and in male mice of both ages compared with their counterparts. However, the expression of p68 was significantly lower in old males compared with adult males, although other groups did not show significant changes. Such age- and sex-specific interaction of p68 suggests its implication in ERalpha-mediated brain functions during aging.


Assuntos
Envelhecimento , Encéfalo/metabolismo , RNA Helicases DEAD-box/metabolismo , Receptor alfa de Estrogênio/metabolismo , Animais , Far-Western Blotting , Densitometria , Receptor alfa de Estrogênio/química , Feminino , Imunoprecipitação , Masculino , Camundongos , Camundongos Endogâmicos AKR , Estrutura Terciária de Proteína , Caracteres Sexuais
18.
J Mol Neurosci ; 37(3): 269-73, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18679832

RESUMO

We have reported earlier that estrogen receptor (ER) alpha-transactivation domain (TAD) interacted with four nuclear proteins of 100 kD, 80 kD, 68 kD, and 50 kD of mouse brain and identified 68 kD as p68 RNA helicase and 50 kD as beta-tubulin. In this paper, we describe the identification of 80 kD nuclear protein as metastasis associated protein 1 (MTA1) and its interaction and expression in the brain of aging mice. Far-Western blotting and immunoprecipitation data revealed lower interaction of MTA1 in old than adult mice of both sexes. Furthermore, adult male showed lower expression of protein as compared to adult female. Altogether these findings suggest that age-dependent decrease in the expression of MTA1 and its interaction with ERalpha-TAD may influence the estrogen-mediated signaling pathway during aging of mouse brain.


Assuntos
Envelhecimento/fisiologia , Encéfalo/metabolismo , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Fatores de Transcrição/metabolismo , Envelhecimento/patologia , Animais , Encéfalo/patologia , Receptor alfa de Estrogênio/genética , Feminino , Masculino , Camundongos , Estrutura Terciária de Proteína , Proteínas Repressoras , Transativadores , Fatores de Transcrição/genética
19.
Age (Dordr) ; 30(4): 237-43, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19424847

RESUMO

Receptor-interacting protein (RIP) is a well-characterized coregulator for nuclear receptors. Here, we report the expression of RIP as two isoforms with molecular weights of 140 kDa and 137 kDa in liver and kidney, but only as one isoform of 140 kDa in lung, adipose tissue, prostate and testis of mice. The levels of both the isoforms decreased in liver and kidney of old mice compared with adult mice. The expression of RIP140 in kidney was relatively lower in old males than females. In contrast, adipose tissue showed remarkably higher levels of RIP140 in old than adult mice of both sexes. Thus, the expression of RIP varied with the type of tissue, sex and age of mice, suggesting differences in its function as a coregulator.

20.
Mol Biol Rep ; 35(4): 589-94, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17786586

RESUMO

Escherichia coli (E. coli) is the most widely used prokaryotic host system for the synthesis of recombinant proteins. The overproduction of recombinant proteins is sometimes lethal to the host cells. In the present study, we expressed the ligand binding domain (LBD) of mouse estrogen receptor alpha (mouse ERalpha) using an expression vector (pIVEX) in E. coli BL21(DE3) and examined the effect of production of this protein on bacterial growth. The expressed protein was immunologically detected as a 30 kD histidine-tagged protein in the soluble part of the bacterial lysate. The overproduction of mouse ERalpha-LBD, as reflected by total protein content and expression pattern, resulted in the decrease of bacterial growth.


Assuntos
Escherichia coli/genética , Receptor alfa de Estrogênio/genética , Animais , Sobrevivência Celular , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Receptor alfa de Estrogênio/biossíntese , Ligantes , Camundongos , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA