Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Environ Sci Technol ; 57(51): 21704-21714, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38079531

RESUMO

Foliar application of nutrient nanoparticles (NPs) is a promising strategy for improving fertilization efficiency in agriculture. Phloem translocation of NPs from leaves is required for efficient fertilization but is currently considered to be feasible only for NPs smaller than a cell wall pore size exclusion limit of <20 nm. Using mass spectrometry imaging, we provide here the first direct evidence for phloem localization and translocation of a larger (∼70 nm) fertilizer NP comprised of ZnO encapsulated in mesoporous SiO2 (ZnO@MSN) following foliar deposition. The Si content in the phloem tissue of the petiole connected to the dosed leaf was ∼10 times higher than in the xylem tissue, and ∼100 times higher than the phloem tissue of an untreated tomato plant petiole. Direct evidence of NPs in individual phloem cells has only previously been shown for smaller NPs introduced invasively in the plant. Furthermore, we show that uptake and translocation of the NPs can be enhanced by their application on the abaxial (lower) side of the leaf. Applying ZnO@MSN to the abaxial side of a single leaf resulted in a 56% higher uptake of Zn as well as higher translocation to the younger (upper) leaves and to the roots, than dosing the adaxial (top) side of a leaf. The higher abaxial uptake of NPs is in alignment with the higher stomatal density and lower density of mesophyll tissues on that side and has not been demonstrated before.


Assuntos
Nanopartículas , Solanum lycopersicum , Óxido de Zinco , Dióxido de Silício , Floema , Folhas de Planta , Zinco
2.
Ecotoxicol Environ Saf ; 262: 115164, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37356401

RESUMO

Widespread applications and release of photoactive nanoparticles (NPs) such as titanium dioxide (TiO2) into environmental matrices warrant mechanistic investigations addressing toxicity of NPs under environmentally relevant conditions. Accordingly, we investigated the effects of surface adsorbed natural organic matters (NOMs) such as humic acid, tannic acid and lignin on the band gap energy, abiotic reactive oxygen species (ROS) generation, surface chemistry and phototoxicity of TiO2 NPs. Initially, a liquid assisted grinding method was optimized to produce TiO2 NPs with a NOM layer of defined thickness for further analysis. Generally, adsorption of NOM reduced the band-gap energy of TiO2 NPs from 3.08 eV to 0.56 eV with humic acid, 1.92 eV with tannic acid and 2.48 eV with lignin. Light activated ROS generation by TiO2 NPs such as hydroxyl radicals, however, was reduced by 4, 2, 9 times in those coated with humic acid, tannic acid and lignin, respectively. This reduction in ROS despite decrease in band gap energy corroborated with the decreased surface oxygen vacancy (as revealed by X-ray Photoelectron Spectroscopy (XPS)) and quenching of ROS by surface adsorbed NOM. Despite the reduced ROS generation, the NOM-modified TiO2 NPs exhibited an increased phototoxicity to Chlorella vulgaris in comparison to pristine TiO2 NPs. Further analysis suggested that photoactivation of NOM modified TiO2 NPs releases toxic degradation products. Findings from our studies thus provide mechanistic insight into the ecotoxic potential of NOM-modified TiO2 NPs when exposed to light in the environment.

3.
J Sci Food Agric ; 103(14): 6780-6789, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37357569

RESUMO

BACKGROUND: Nanoencapsulation has opened promising fields of innovation for pesticides. Conventional pesticides can cause side effects on plant metabolism. To date, the effect of nanoencapsulated pesticides on plant phenolic contents has not been reported. RESULTS: In this study, a comparative evaluation of the phenolic contents and metabolic profiles of strawberries was performed for plants grown under controlled field conditions and treated with two separate active ingredients, azoxystrobin and bifenthrin, loaded into two different types of nanocarriers (Allosperse® polymeric nanoparticles and SiO2 nanoparticles). There were small but significant decreases of the total phenolic content (9%) and pelargonidin 3-glucoside content (6%) in strawberries treated with the nanopesticides. An increase of 31% to 125% was observed in the levels of gallic acid, quercetin, and kaempferol in the strawberries treated with the nanoencapsulated pesticides compared with the conventional treatments. The effects of the nanocarriers on the metabolite and phenolic profiles was identified by principal component analysis. CONCLUSION: Overall, even though the effects of nanopesticides on the phenological parameters of strawberry plants were not obvious, there were significant changes to the plants at a molecular level. In particular, nanocarriers had some subtle effects on plant health and fruit quality through variations in total and individual phenolics in the fruits. Further research will be needed to assess the impact of diverse nanopesticides on other groups of plant metabolites. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

4.
Sci Total Environ ; 871: 161777, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36709895

RESUMO

Although a number of studies have assessed hydrocarbon degradation or microbial responses in petroleum contaminated soils, few have examined both and/or assessed impacts in multiple soils simultaneously. In this study petroleum hydrocarbon biodegradation and microbial activity was monitored in seven sub-Arctic soils at similar levels (∼3500-4000 mg/kg) of Arctic diesel (DSL), amended with moisture and nutrients (70 mg-N/kg, 78 mg-P/kg), and incubated at site-representative summer temperatures (∼7 °C) under water unsaturated conditions. Total petroleum hydrocarbon (TPH) biodegradation extents (42.7-85.4 %) at 50 days were slightly higher in nutrient amended (DSL + N,P) than unamended (DSL) systems in all but one soil. Semi-volatile (C10-C16) hydrocarbons were degraded to a greater extent (40-80 %) than non-volatile (C16-C24) hydrocarbons (20-40 %). However, more significant shifts in microbial diversity and relative abundance of genera belonging to Actinobacteria and Proteobacteria phyla were observed in DSL + N,P than in DSL systems in all soils. Moreover, higher abundance of the alkane degrading gene alkB were observed in DSL + N,P systems than in DSL systems for all soils. The more significant microbial community response in the DSL + N,P systems indicate that addition of nutrients may have influenced the microbial community involved in degradation of carbon sources other than the diesel compounds, such as the soil organic matter or degradation intermediates of diesel compounds. Nocardioides, Arthrobacter, Marmoricola, Pseudomonas, Polaromonas, and Massilia genera were present in high relative abundance in the DSL systems suggesting those genera contained hydrocarbon degraders. Overall, the results suggest that the extents of microbial community shifts or alkB copy number increases may not be closely correlated to the increase in hydrocarbon biodegradation and thus bioremediation performance between various treatments or across different soils.


Assuntos
Microbiota , Petróleo , Poluentes do Solo , Solo/química , Biodegradação Ambiental , Hidrocarbonetos/metabolismo , Petróleo/metabolismo , Nutrientes , Microbiologia do Solo , Poluentes do Solo/análise
5.
Environ Sci Technol ; 56(19): 13975-13984, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36103595

RESUMO

Recent research has demonstrated that chemotactic bacteria can disperse inside microsized pores while traveling toward favorable conditions. Microbe-microbe cotransport might enable nonmotile bacteria to be carried with motile partners to enhance their dispersion and reduce their deposition in porous systems. The aim of this study was to demonstrate the enhancement in the dispersion of nonmotile bacteria (Mycobacterium gilvum VM552, a polycyclic aromatic hydrocarbon-degrader, and Sphingobium sp. D4, a hexachlorocyclohexane-degrader, through micrometer-sized pores near the exclusion-cell-size limit, in the presence of motile Pseudomonas putida G7 cells. For this purpose, we used bioreactors equipped with two chambers that were separated with membrane filters with 3, 5, and 12 µm pore sizes and capillary polydimethylsiloxane (PDMS) microarrays (20 µm × 35 µm × 2.2 mm). The cotransport of nonmotile bacteria occurred exclusively in the presence of a chemoattractant concentration gradient, and therefore, a directed flow of motile cells. This cotransport was more intense in the presence of larger pores (12 µm) and strong chemoeffectors (γ-aminobutyric acid). The mechanism that governed cotransport at the cell scale involved mechanical pushing and hydrodynamic interactions. Chemotaxis-mediated cotransport of bacterial degraders and its implications in pore accessibility opens new avenues for the enhancement of bacterial dispersion in porous media and the biodegradation of heterogeneously contaminated scenarios.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Pseudomonas putida , Fatores Quimiotáticos/metabolismo , Quimiotaxia , Dimetilpolisiloxanos/metabolismo , Hexaclorocicloexano/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Porosidade , Pseudomonas putida/metabolismo , Ácido gama-Aminobutírico/metabolismo
6.
Chem Res Toxicol ; 35(9): 1457-1466, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-35943131

RESUMO

Commercially used quantum dots (QDs) exemplify complex nanomaterials with multiple components, though little is known about the type of interactions between these components in determining the overall toxicity of this material. We synthesized and characterized a functional QD (CdSe/ZnS_P&E) that was identical in structure and composition to a patented and commercially applied QD and the combinations of its components (CdSe, CdSe/ZnS, ZnS, CdSe_P&E, ZnS_P&E, and P&E). Cells exposed to incremental concentrations of these materials were investigated for cell viability and cellular perturbations, contributing to a final common pathway of cell death using high-content screening assays in model human intestinal epithelial cells (HIEC-6). The concentrations that resulted in a loss of 20% cell viability (EC20 values) for each tested component were used for estimating the combination index (CI) to evaluate synergistic or antagonistic effects between the components. Complete QD (core/shell-polymer) showed the highest toxic potential due to synergistic interactions between core and surface functional groups. The cationic polymer coating enhanced cellular uptake of the QD, ensuing lysosome acidification and release of heavy metal ions to the intracellular milieu, and caused oxidative stress and cytotoxicity. Overall, this study advances our understanding of the collective contribution of individual components of a functional QD toward its toxic potential and emphasizes the need to study multilayered nanomaterials in their entirety for hazard characterization.


Assuntos
Compostos de Cádmio , Metais Pesados , Pontos Quânticos , Compostos de Selênio , Compostos de Cádmio/química , Compostos de Cádmio/toxicidade , Humanos , Metais Pesados/toxicidade , Polímeros/química , Pontos Quânticos/química , Compostos de Selênio/química , Compostos de Selênio/toxicidade , Sulfetos/química , Compostos de Zinco/química , Compostos de Zinco/toxicidade
7.
Environ Sci Technol ; 56(10): 6722-6732, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35467849

RESUMO

Pesticide nanoencapsulation and its foliar application are promising approaches for improving the efficiency of current pesticide application practices, whose losses can reach 99%. Here, we investigated the uptake and translocation of azoxystrobin, a systemic pesticide, encapsulated within porous hollow silica nanoparticles (PHSNs) of a mean diameter of 253 ± 73 nm, following foliar application on tomato plants. The PHSNs had 67% loading efficiency for azoxystrobin and enabled its controlled release over several days. Thus, the nanoencapsulated pesticide was taken up and distributed more slowly than the nonencapsulated pesticide. A total of 8.7 ± 1.3 µg of the azoxystrobin was quantified in different plant parts, 4 days after 20 µg of nanoencapsulated pesticide application on a single leaf of each plant. In parallel, the uptake and translocation of the PHSNs (as total Si and particulate SiO2) in the plant were characterized. The total Si translocated after 4 days was 15.5 ± 1.6 µg, and the uptake rate and translocation patterns for PHSNs were different from their pesticide load. Notably, PHSNs were translocated throughout the plant, although they were much larger than known size-exclusion limits (reportedly below 50 nm) in plant tissues, which points to knowledge gaps in the translocation mechanisms of nanoparticles in plants. The translocation patterns of azoxystrobin vary significantly following foliar uptake of the nanosilica-encapsulated and nonencapsulated pesticide formulations.


Assuntos
Nanopartículas , Praguicidas , Solanum lycopersicum , Transporte Biológico , Dióxido de Silício
8.
Sci Total Environ ; 832: 154938, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35390372

RESUMO

A major cause of high bioremediation endpoints is the limited bioaccessibility to residual contaminants resting in soil pores with diameters close to the size exclusion limit of bacterial cells. Under nongrowing conditions and in the absence of hydraulic flow, we examined how the tactic behavior of motile, contaminant-degrading Pseudomonas putida G7 cells (2 × 1 µm) influenced passage through membranes with pores ranging in size from 1 µm to 12 µm. The bacteria were spontaneously retained by the membranes - even those with the largest pore size. However, the cells were mobilized through 5 µm and 12 µm pores after the application of an attractant (salicylate). Mobilization also occurred by attraction to the common root exudate constituents γ-aminobutyric acid and citrate and repellence (or negative taxis) to zero-valent iron nanoparticles. The observed pore size threshold for tactic mobilization (5 µm) and unaltered cell fluxes and effective cell diffusion against different chemoeffector strengths and concentrations suggest that there is a physical constraint on the gradient sensing mechanism at the pores that drives the tactic response. Our results indicate that chemically mediated, small-scale tactic reactions of motile bacteria may become relevant to enhance the bioaccessibility of the residual contaminants present in micrometer-sized soil pores.


Assuntos
Pseudomonas putida , Poluentes do Solo , Biodegradação Ambiental , Pseudomonas putida/metabolismo , Solo , Microbiologia do Solo , Poluentes do Solo/metabolismo
9.
IEEE Trans Nanobioscience ; 21(1): 157-165, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34398760

RESUMO

Arsenic (As) is highly toxic in its inorganic form. It is naturally presented at elevated levels in the groundwater of a number of countries and contaminates drinking water sources, generating numerous health and environmental problems. Current methodologies for its remediation have deficiencies which fuel the constant exploration of new alternatives. Therefore, the development of robust methodologies for the evaluation of potential remediation technologies are not only timely but also highly needed. In this study we have investigated the use of a rice plant species as a means to evaluate the efficacy of As remediation using sulfidated zerovalent iron nanoparticles (S-nZVI). The obtained results show that addition of S-nZVI to soils had a beneficial impact to plant growth in the presence of As(V) and As(III) concentrations between 10 and 50 ppm. Positive effects were also found for plant biomass and chlorophyll content in the plants. Moreover, evaluation of As uptake by plants showed that the application of S-nZVI reduced the amount of both As(V) and As(III) in shoots and increased the amount of As in the roots. Studies on the Fe and P content in shoot and root after exposure to As with and without the nanoparticles demonstrated that nanoparticles remain mainly in the roots and that P uptake by plants was not significantly affected, suggesting that S-nZVI treatment is safe for plants at the assayed doses. These results overall confirm the method as robust and reliable for demonstrating the reduction of the bioavailability of As in soil by S-nZVI sequestration.


Assuntos
Arsênio , Nanopartículas , Oryza , Poluentes do Solo , Ferro , Solo
10.
J Colloid Interface Sci ; 606(Pt 1): 480-490, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34399364

RESUMO

Silica nanoparticles (SiO2 NPs) are of increasing interest in nano-enabled agriculture, particularly as nanocarriers for the targeted delivery of agrochemicals. Their direct application in agricultural soils may lead to the release of SiO2 NPs in the environment. Although some studies have investigated transport of solid SiO2 NPs in porous media, there is a knowledge gap on how different SiO2 NP structures incorporating significant porosities can affect the mobility of such particles under different conditions. Herein, we investigated the effect of pH and ionic strength (IS) on the transport of two distinct structures of SiO2 NPs, namely solid SiO2 NPs (SSNs) and porous hollow SiO2 NPs (PHSNs), of comparable sizes (~200 nm). Decreasing pH and increasing ionic strength reduced the mobility of PHSNs in sand-packed columns more significantly than for SSNs. The deposition of PHSNs was approximately 3 times greater than that of SSNs at pH 4.5 and IS 100 mM. The results are non-intuitive given that PHSNs have a lower density and the same chemical composition of SSNs but can be explained by the greater surface roughness and ten-fold greater specific surface area of PHSNs, and their impacts on van der Waals and electrostatic interaction energies.


Assuntos
Nanopartículas , Dióxido de Silício , Concentração Osmolar , Porosidade
11.
Talanta ; 239: 123093, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34920258

RESUMO

The increased production and use of nanopesticides will increase the likelihood of their exposure to humans and the environment. In order to properly evaluate their risk, it will be necessary to rigorously quantify their concentrations in major environmental compartments including water, soil and food. Due to major differences in the characteristics of their formulation, it is unclear whether analytical techniques that have been developed for conventional pesticides will allow quantification of the nano-forms. Therefore, it is necessary to develop and validate analytical techniques for the quantification of nanopesticides in foods and the environment. The goal of this study was to validate a method for analyzing the active ingredients of two pesticides with different physicochemical properties: azoxystrobin (AZOX, a fungicide, log Kow 3.7) and bifenthrin (BFT, an insecticide, log Kow 6.6) that were applied to agricultural soils, either as a conventional formulation or encapsulated in nanoparticles (either Allosperse® or porous hollow nSiO2). Pesticide-free strawberry plants (Fragaria × ananassa) and three different agricultural soils were spiked with the active ingredients (azoxystrobin and bifenthrin), in either conventional or nano formulations. A modified QuEChERS approach was used to extract the pesticides from the strawberry plants (roots, leaves and fruits) and a solvent extraction (1:2 acetonitrile) was employed for the soils. Samples were analyzed by liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry in order to determine method detection limits, recoveries, precision and matrix effects for both the "conventional" and nanoencapsulated pesticides. Results for the modified method indicated good recoveries and precision for the analysis of the nanoencapsulated pesticides from strawberries and agricultural soils, with recoveries ranging from 85 to 127% (AZOX) and 68-138% (BFT). The results indicated that the presence of the nanoencapsulants had significant effects on the efficiency of extraction and the quantification of the active ingredients. The modified analytical methods were successfully used to measure strawberry and soil samples from a field experiment, providing the means to explore the fate of nanoencapsulated pesticides in food and environmental matrices.


Assuntos
Fragaria , Resíduos de Praguicidas , Praguicidas , Cromatografia Líquida , Humanos , Resíduos de Praguicidas/análise , Praguicidas/análise , Solo , Espectrometria de Massas em Tandem
12.
Environ Sci Technol ; 55(24): 16655-16664, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34882405

RESUMO

6:2 Fluorotelomer sulfonate (6:2 FTSA) is a ubiquitous environmental contaminant belonging to the family of per- and polyfluoroalkyl substances. Previous studies showed that hydroxyl radical (•OH) efficiently transforms 6:2 FTSA into perfluoroalkyl carboxylates (PFCAs) of different chain lengths (C2-C7), yet the reaction mechanisms were not elucidated. This study used density functional theory (DFT) calculations to map the entire reaction path of 6:2 FTSA initiated by •OH and experimentally verified the theoretical results. Optimal reaction pathways were obtained by comparing the rate constants calculated from the transition-state theory. We found that 6:2 FTSA was first transformed to C7 PFCA and C6F13•; C6F13• was then further reacted to C2-C6 PFCAs. The parallel addition of •OH and O2 to CnF2n+1• was essential to producing C2-C6 PFCAs. The critical step is the generation of alkoxyl radicals, which withdraw electrons from the adjacent C-C groups to result in chain cleavage. The validity of the calculated optimal reaction pathways was further confirmed by the consistency with our experimental data in the aspects of O2 involvement, identified intermediates, and the final PFCA profile. This study provides valuable insight into the transformation of polyfluoroalkyl substances containing aliphatic carbons in •OH-based oxidation processes.


Assuntos
Fluorocarbonos , Radical Hidroxila , Alcanossulfonatos , Teoria da Densidade Funcional
13.
Water Res ; 202: 117424, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34332190

RESUMO

Hydrocarbon and salt contamination of surface and groundwater resources often co-occur from oil production activities. However, salt is often considered as a potential inhibitor of microbial activity. The feasibility of microbiome-based biotechnologies to treat the hydrocarbon contamination is contingent on the ability of the indigenous community to adapt to saline conditions. Here, we demonstrate enhanced hydrocarbon biodegradation in soil slurries under saline conditions of up to ~1 M (5%) compared to non-saline systems and the underlying causes. The mineralization extent of hexadecane was enhanced by salinity in the absence of nutrients. Salinity, similar to nutrients, enhanced the mineralization but through ecological selection. Microbial community analysis indicated a significant enrichment of Actinobacteria phylum and an increase in the absolute abundance of the hydrocarbon-degrading Dietzia genus, but a decrease in the total population size with salinity. Moreover, the in situ expression of alkane hydroxylases genes of Dietzia was generally increased with salinity. The data demonstrate that indigenous halotolerant hydrocarbon degraders were enriched, and their hydrocarbon degradation genes upregulated under saline conditions. These findings have positive implications for engineered biotreatment approaches for hydrocarbons in saline environments such as those affected with produced waters and oil sands tailing ponds.


Assuntos
Campos de Petróleo e Gás , Petróleo , Bactérias/genética , Biodegradação Ambiental , Reatores Biológicos , Hidrocarbonetos
14.
Environ Sci Technol ; 55(13): 8464-8483, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34170112

RESUMO

2021 marks 10 years since controlled abiotic synthesis of sulfidated nanoscale zerovalent iron (S-nZVI) for use in site remediation and water treatment emerged as an area of active research. It was then expanded to sulfidated microscale ZVI (S-mZVI) and together with S-nZVI, they are collectively referred to as S-(n)ZVI. Heightened interest in S-(n)ZVI stemmed from its significantly higher reactivity to chlorinated solvents and heavy metals. The extremely promising research outcomes during the initial period (2011-2017) led to renewed interest in (n)ZVI-based technologies for water treatment, with an explosion in new research in the last four years (2018-2021) that is building an understanding of the novel and complex role of iron sulfides in enhancing reactivity of (n)ZVI. Numerous studies have focused on exploring different S-(n)ZVI synthesis approaches, and its colloidal, surface, and reactivity (electrochemistry, contaminant selectivity, and corrosion) properties. This review provides a critical overview of the recent milestones in S-(n)ZVI technology development: (i) clear insights into the role of iron sulfides in contaminant transformation and long-term aging, (ii) impact of sulfidation methods and particle characteristics on reactivity, (iii) broader range of treatable contaminants, (iv) synthesis for complete decontamination, (v) ecotoxicity, and (vi) field implementation. In addition, this review discusses major knowledge gaps and future avenues for research opportunities.


Assuntos
Recuperação e Remediação Ambiental , Poluentes Químicos da Água , Purificação da Água , Corrosão , Ferro
15.
Water Res ; 201: 117328, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34171646

RESUMO

Sulfidated nanoscale zerovalent iron (S-nZVI) is a promising reductant for trichloroethylene in groundwater, yet a comprehensive understanding of its degradation efficiency for other chlorinated hydrocarbons (CHCs) is lacking. In this study, we assessed the benefits of using S-nZVI for the degradation of two chlorinated methanes, three chlorinated ethanes, and four chlorinated ethenes compared to unamended nZVI, by analyzing the degradation rate constants, the maximum degradation quantity, and the degradation pathways and products under both stoichiometrically electron excess and limited conditions. The improvement in rate constants induced by sulfidation was compound specific and was more significant for chlorinated ethenes (57-707 folds) than for the other CHCs (1.0-17 folds). This is likely because of the different reduction mechanisms of each CHC and sulfidation may favor specific mechanisms associated with the reduction of chlorinated ethenes more than the others. Sulfidation of nZVI enabled either higher (3.1-24.4 folds) or comparable (0.78-0.91) maximum degradation quantity, assessed under electron limited conditions, for all the CHCs investigated, indicating the promise of S-nZVI for remediation of groundwater contaminated by CHC mixtures. Furthermore, we proposed the degradation pathways of various CHCs based on the observed degradation intermediates and products and found that sulfidation suppressed the generation of partially dechlorinated products, particularly for chlorinated methanes and ethanes, and favor degradation pathways leading to the non-chlorinated benign products. This is the first comprehensive study on the efficacy of sulfidation in improving the degradation of a suite of CHCs and the results provide valuable insight to the assessment of applicability and benefits of S-nZVI for CHC remediation.


Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Ferro
16.
Environ Sci Technol ; 55(20): 13551-13560, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34003637

RESUMO

Nanoparticles composed of ZnO encapsulated in a mesoporous SiO2 shell (nZnO@SiO2) with a primary particle diameter of ∼70 nm were synthesized for delivery of Zn, a micronutrient, by foliar uptake. Compared to the rapid dissolution of bare nZnO (90% Zn dissolution after 4 h) in a model plant media (pH = 5), nZnO@SiO2 released Zn more slowly (40% Zn dissolution after 3 weeks), thus enabling sustained Zn delivery over a longer period. nZnO@SiO2, nZnO, and ZnCl2 were exposed to Solanum lycopersicum by dosing 40 µg of Zn micronutrient (in a 20 µL suspension) on a single leaf. No Zn uptake was observed for the nZnO treatment after 2 days. Comparable amounts of Zn uptake were observed 2 days after ZnCl2 (15.5 ± 2.4 µg Zn) and nZnO@SiO2 (11.4 ± 2.2 µg Zn) dosing. Single particle inductively coupled plasma mass spectrometry revealed that for foliar applied nZnO@SiO2, almost all of the Zn translocated to upper leaves and the stem were in nanoparticulate form. Our results suggest that the SiO2 shell enhances the uptake of ZnO nanoparticles in Solanum lycopersicum. Sustained and controlled micronutrient delivery in plants through foliar application will reduce fertilizer, energy, and water use.


Assuntos
Nanopartículas , Solanum lycopersicum , Óxido de Zinco , Transporte Biológico , Dióxido de Silício
18.
Nanotoxicology ; 15(4): 527-541, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33756094

RESUMO

Silver (nAg) and titanium dioxide nanoparticles (nTiO2) are common engineered nanoparticles (ENPs) added into paint for their antimicrobial and whitening properties, respectively. Weathering of outdoor painted surfaces can release such ENPs, though little is known about the potential effects of released ENPs on aquatic species. The objective of this study was to characterize the toxicity of nAg and nTiO2 released from painted panels using fish liver cells (CRL2643) and zebrafish embryos (OECD 236 embryotoxicity test). Cells and embryos were exposed to suspensions of pristine nAg or nTiO2, panels (unpainted or painted with nAg or nTiO2) or base paint, after sonication. Cell viability and gene expression were assessed using resazurin assay and qPCR, respectively, while embryo mortality and deformities were scored visually via microscopic examination. In the cell studies, both paint-released nanoparticles did not affect viability, but paint-released nAg resulted in differential expression of a few genes including gclc and ncf1. In embryos, paint-released nAg increased mortality and incidence of deformities, whereas paint-released nTiO2 resulted in differential expression of several genes including gclc, ncf1, txnrd1, gpx1b, and cyp1c1 but without major phenotypic abnormalities. Comparing the two types of exposures, paint-released exposures affected both molecular (gene expression) and apical (embryotoxicity) endpoints, while pristine exposures affected the expression of some genes but had no apical effects. The differing effects of paint-released and pristine nanoparticle exposures suggest that further research is needed to further understand how paint coatings (and the products of their weathering and aging) may influence nanoparticle toxicity to aquatic organisms.


Assuntos
Nanopartículas Metálicas , Animais , Nanopartículas Metálicas/toxicidade , Pintura/toxicidade , Prata/toxicidade , Titânio/toxicidade , Peixe-Zebra
19.
Sci Total Environ ; 778: 145441, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33725602

RESUMO

Surfactants are used to enhance the bioavailability of recalcitrant residual petroleum contamination during bioremediation. However, surfactants in some cases inhibit biodegradation, which is often attributed to their toxicity. Herein, we show that a rhamnolipid biosurfactant likely served as a carbon source and exhibited physiological inhibition on petroleum biodegradation. The addition of biosurfactants in mixed, batch, slurry bioreactors with soils from a petroleum-contaminated site led to a dose-dependent shift in the microbial community with a decrease in diversity and increase in population size and delayed biodegradation. Microbial community analysis indicated the enrichment of Alphaproteobacteria affiliated taxa such as Sphingomonadaceae in systems amended with biosurfactant. The diversity was significantly lower in systems with higher doses of biosurfactants compared to systems without biosurfactant. Droplet Digital PCR indicated a 30-90 fold increase in 16S rRNA copy numbers in systems with higher doses of biosurfactant than control systems without surfactant and nutrients, whereas the nutrient amendment alone led to a two-fold increase in population size. Total petroleum hydrocarbon analysis showed that the biodegradation extent was negatively impacted by rhamnolipid at the highest dose compared to lower doses (23% vs. 40%) or without the biosurfactant. Indigenous isolates cultivated from the oil-amended soil exhibited growth on rhamnolipid as a sole carbon source. A novel insight gained is how dose-dependent responses of microbial communities to biosurfactants alter the biodegradation time profile of hydrocarbons. The study highlights the significance of microbial assessment prior to surfactant-mediated bioremediation practices.


Assuntos
Petróleo , Poluentes do Solo , Biodegradação Ambiental , Glicolipídeos , Hidrocarbonetos , Densidade Demográfica , RNA Ribossômico 16S , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Tensoativos
20.
Langmuir ; 36(48): 14633-14643, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33226821

RESUMO

SiO2 is bioinert and highly functionalizable, thus making it a very attractive material for nanotechnology applications such as drug delivery and nanoencapsulation of pesticides. Herein, we synthesized porous hollow SiO2 nanoparticles (PHSNs) by using cetyltrimethylammonium bromide (CTAB) and Pluronic P123 as the structure-directing agents. The porosity and hollowness of the SiO2 structure allow for the protective and high-density loading of molecules of interest inside the nanoshell. We demonstrate here that loading can be achieved post-synthesis through the pores of the PHSNs. The PHSNs are monodisperse with a mean diameter of 258 nm and a specific surface area of 287 m2 g-1. The mechanism of formation of the PHSNs was investigated using 1-D and 2-D solid-state nuclear magnetic resonance (SS-NMR) and Fourier-transform infrared spectroscopy (FTIR). The data suggest that CTAB and Pluronic P123 interact, forming a hydrophobic spherical hollow cage that serves as a template for the porous hollow structure. After synthesis, the surfactants were removed by calcination at 550 °C and the PHSNs were added to an Fe3+ solution followed by addition of the reductant NaBH4 to the suspension, which led to the formation of Fe(0) NPs both on the PHSNs and inside the hollow shell, as confirmed by transmission electron microscopy imaging. The imaging of the formation of Fe(0) NPs inside the hollow shell provides direct evidence of transport of solute molecules across the shell and their reactions within the PHSNs, making it a versatile nanocarrier and nanoreactor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA