Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Integr Zool ; 17(3): 430-442, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34047457

RESUMO

Morphological, functional, and behavioral adaptations of bats are among the most diverse within mammals. A strong association between bat skull morphology and feeding behavior has been suggested previously. However, morphological variation related to other drivers of adaptation, in particular echolocation, remains understudied. We assessed variation in skull morphology with respect to ecology (diet and emission type) and function (bite force, masticatory muscles and echolocation characteristics) using geometric morphometrics and comparative methods. Our study suggests that variation in skull shape of 10 bat families is the result of adaptations to broad dietary categories and sound emission types (oral or nasal). Skull shape correlates with echolocation parameters only in a subsample of insectivorous species, possibly because they (almost) entirely rely on this sensory system for locating and capturing prey. Insectivores emitting low frequencies are characterized by a ventrally tilted rostrum, a trait not associated with feeding parameters. This result questions the validity of a trade-off between feeding and echolocation function. Our study advances understanding of the relationship between skull morphology and specific features of echolocation and suggests that evolutionary constraints due to echolocation may differ between different groups within the Chiroptera.


Assuntos
Quirópteros , Ecolocação , Animais , Evolução Biológica , Quirópteros/fisiologia , Ecolocação/fisiologia , Humanos , Filogenia , Crânio/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA