Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cells ; 12(7)2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37048162

RESUMO

Recent proteomic, metabolomic, and transcriptomic studies have highlighted a connection between changes in mitochondria physiology and cellular pathophysiological mechanisms. Secondary assays to assess the function of these organelles appear fundamental to validate these -omics findings. Although mitochondrial membrane potential is widely recognized as an indicator of mitochondrial activity, high-content imaging-based approaches coupled to multiparametric to measure it have not been established yet. In this paper, we describe a methodology for the unbiased high-throughput quantification of mitochondrial membrane potential in vitro, which is suitable for 2D to 3D models. We successfully used our method to analyze mitochondrial membrane potential in monolayers of human fibroblasts, neural stem cells, spheroids, and isolated muscle fibers. Moreover, by combining automated image analysis and machine learning, we were able to discriminate melanoma cells from macrophages in co-culture and to analyze the subpopulations separately. Our data demonstrated that our method is a widely applicable strategy for large-scale profiling of mitochondrial activity.


Assuntos
Microscopia , Proteômica , Humanos , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Fibroblastos/metabolismo
2.
Mol Cell ; 38(2): 280-90, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20417605

RESUMO

Although it is widely accepted that mitochondria in living cells can efficiently uptake Ca(2+) during stimulation because of their vicinity to microdomains of high [Ca(2+)], the direct proof of Ca(2+) hot spots' existence is still lacking. Thanks to a GFP-based Ca(2+) probe localized on the cytosolic surface of the outer mitochondrial membrane, we demonstrate that, upon Ca(2+) mobilization, the [Ca(2+)] in small regions of the mitochondrial surface reaches levels 5- to 10-fold higher than in the bulk cytosol. We also show that the [Ca(2+)] to which mitochondria are exposed during capacitative Ca(2+) influx is similar between near plasma membrane mitochondria and organelles deeply located in the cytoplasm, whereas it is 2- to 3-fold higher in subplasma membrane mitochondria upon activation of voltage-gated Ca(2+) channels. These results demonstrate that mitochondria are exposed to Ca(2+) hot spots close to the ER but are excluded from the regions where capacitative Ca(2+) influx occurs.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Cátions/metabolismo , Mitocôndrias/metabolismo , Canais de Cálcio/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Citosol/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Imuno-Histoquímica , Cinética , Microdomínios da Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Neoplasias Hipofisárias/patologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA