Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Immunity ; 54(4): 781-796.e4, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33675683

RESUMO

Human IGHV1-69-encoded broadly neutralizing antibodies (bnAbs) that target the hepatitis C virus (HCV) envelope glycoprotein (Env) E2 are important for protection against HCV infection. An IGHV1-69 ortholog gene, VH1.36, is preferentially used for bnAbs isolated from HCV Env-immunized rhesus macaques (RMs). Here, we studied the genetic, structural, and functional properties of VH1.36-encoded bnAbs generated by vaccination, in comparison to IGHV1-69-encoded bnAbs from HCV patients. Global B cell repertoire analysis confirmed the expansion of VH1.36-derived B cells in immunized animals. Most E2-specific, VH1.36-encoded antibodies cross-neutralized HCV. Crystal structures of two RM bnAbs with E2 revealed that the RM bnAbs engaged conserved E2 epitopes using similar molecular features as human bnAbs but with a different binding mode. Longitudinal analyses of the RM antibody repertoire responses during immunization indicated rapid lineage development of VH1.36-encoded bnAbs with limited somatic hypermutation. Our findings suggest functional convergence of a germline-encoded bnAb response to HCV Env with implications for vaccination in humans.


Assuntos
Anticorpos Neutralizantes/imunologia , Células Germinativas/imunologia , Glicoproteínas/imunologia , Hepacivirus/imunologia , Hepatite C/imunologia , Macaca mulatta/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Linfócitos B/imunologia , Células CHO , Linhagem Celular , Cricetulus , Epitopos/imunologia , Células HEK293 , Hepatite C/virologia , Humanos , Estudos Longitudinais , Macaca mulatta/virologia , Receptores de Antígenos de Linfócitos B/imunologia , Vacinação/métodos
2.
Antivir Ther ; 26(1-2): 3-8, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35485347

RESUMO

Nucleos(t)ide analogues (NAs) are a mainstay of therapy for chronic hepatitis B (CHB) infections and have a profound effect on hepatitis B virus (HBV) suppression. We report a rare case of HBV reactivation in a CHB patient without cirrhosis following cessation of NA therapy that resulted in acute liver failure requiring liver transplantation. Investigation of the viral genetics and host immune responses suggest that viral mutations known to promote virus replication are associated with reactivation, whereas adaptive immunity to HBV remained defective in this patient. Viral sequencing may be useful for identifying mutations that are unfavorable for therapy withdrawal.


Assuntos
Hepatite B Crônica , Transplante de Fígado , Antivirais/uso terapêutico , Vírus da Hepatite B , Hepatite B Crônica/complicações , Hepatite B Crônica/tratamento farmacológico , Humanos , Transplante de Fígado/efeitos adversos , Nucleosídeos/uso terapêutico
3.
ACS Med Chem Lett ; 11(12): 2428-2432, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33335664

RESUMO

Hepatitis C virus (HCV) infections represent a global health challenge; however, developing a vaccine for treatment of HCV infection has remained difficult as heterogeneous HCV contains distinct genotypes, and each genotype contains various subtypes and different envelope glycoproteins. Currently, there is no effective preventive vaccine for achieving global control over HCV. In our efforts to improve upon current HCV vaccines we designed a synthetically accessible adjuvant platform, wherein we synthesized 11 novel lipidated tucaresol analogues to assess their immunological potential. Using a tucaresol-based adjuvant approach, truncated lipid-variants together with an engineered E1E2 antigen construct, namely E2ΔTM3, elicited antibody (Ab) responses that were significantly higher than tucaresol. In sum, antibody end-point titer values largely corroborated HCV neutralization data with a simplified lipidated tucaresol variant affording the highest end point titer and % neutralization. This study lays the groundwork for additional permutations in tucaresol adjuvant design, including the examination of other proteins in vaccine development.

4.
Sci Adv ; 6(30): eabb5642, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32754640

RESUMO

To achieve global elimination of hepatitis C virus (HCV), an effective cross-genotype vaccine is needed. The HCV envelope glycoprotein E2 is the main target for neutralizing antibodies (nAbs), which aid in HCV clearance and protection. E2 is structurally flexible and functions in engaging host receptors. Many nAbs bind to the "neutralizing face" on E2, including several broadly nAbs encoded by the VH1-69 germline gene family that bind to a similar conformation (A) of this face. Here, a previously unknown conformation (B) of the neutralizing face is revealed in crystal structures of two of four additional E2-VH1-69 nAb complexes. In this conformation, the E2 front-layer region is displaced upon antibody binding, exposing residues in the back layer for direct antibody interaction. This E2 B structure may represent another conformational state in the viral entry process that is susceptible to antibody neutralization and thus provide a new target for rational vaccine development.


Assuntos
Hepatite C , Vacinas contra Hepatite Viral , Anticorpos Neutralizantes , Epitopos , Hepacivirus , Anticorpos Anti-Hepatite C , Humanos
5.
Sci Adv ; 6(16): eaaz6225, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32494617

RESUMO

Hepatitis C virus (HCV) envelope glycoproteins E1 and E2 are responsible for cell entry, with E2 being the major target of neutralizing antibodies (NAbs). Here, we present a comprehensive strategy for B cell-based HCV vaccine development through E2 optimization and nanoparticle display. We redesigned variable region 2 in a truncated form (tVR2) on E2 cores derived from genotypes 1a and 6a, resulting in improved stability and antigenicity. Crystal structures of three optimized E2 cores with human cross-genotype NAbs (AR3s) revealed how the modified tVR2 stabilizes E2 without altering key neutralizing epitopes. We then displayed these E2 cores on 24- and 60-meric nanoparticles and achieved substantial yield and purity, as well as enhanced antigenicity. In mice, these nanoparticles elicited more effective NAb responses than soluble E2 cores. Next-generation sequencing (NGS) defined distinct B cell patterns associated with nanoparticle-induced antibody responses, which target the conserved neutralizing epitopes on E2 and cross-neutralize HCV genotypes.


Assuntos
Hepatite C , Nanopartículas , Vacinas , Animais , Anticorpos Neutralizantes , Epitopos , Hepacivirus , Anticorpos Anti-Hepatite C , Camundongos
6.
Gastroenterology ; 158(4): 1058-1071.e6, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31809725

RESUMO

BACKGROUND & AIMS: We investigated antibody responses to hepatitis C virus (HCV) antigens E1 and E2 and the relevance of animal models for vaccine development. We compared antibody responses to vaccination with recombinant E1E2 complex in healthy volunteers, non-human primates (NHPs), and mice. METHODS: We analyzed 519 serum samples from participants in a phase 1 vaccine trial (ClinicalTrials.gov identifier NCT00500747) and compared them with serum or plasma samples from C57BL/6J mice (n = 28) and rhesus macaques (n = 4) immunized with the same HCV E1E2 antigen. Blood samples were collected at different time points and analyzed for antibody binding, neutralizing activity, and epitope specificity. Monoclonal antibodies from the immunized NHPs were isolated from single plasmablasts and memory B cells, and their immunogenetic properties were characterized. RESULTS: Antibody responses of the volunteers, NHPs, and mice to the non-neutralizing epitopes on the E1 N-terminus and E2 hypervariable region 1 did not differ significantly. Antibodies from volunteers and NHPs that neutralized heterologous strains of HCV primarily interacted with epitopes in the antigen region 3. However, the neutralizing antibodies were not produced in sufficient levels for broad neutralization of diverse HCV isolates. Broadly neutralizing antibodies similar to the human VH1-69 class antibody specific for antigen region 3 were produced in the immunized NHPs. CONCLUSIONS: In an analysis of vaccinated volunteers, NHPs, and mice, we found that recombinant E1E2 vaccine antigen induces high-antibody titers that are insufficient to neutralize diverse HCV isolates. Antibodies from volunteers and NHPs bind to the same neutralizing epitopes for virus neutralization. NHPs can therefore be used as a preclinical model to develop HCV vaccines. These findings also provide useful baseline values for development of vaccines designed to induce production of neutralizing antibodies.


Assuntos
Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/imunologia , Hepatite C/prevenção & controle , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Linfócitos B/imunologia , Linfócitos B/virologia , Ensaios Clínicos Fase I como Assunto , Modelos Animais de Doenças , Hepatite C/imunologia , Antígenos da Hepatite C/imunologia , Humanos , Imunização , Imunogenicidade da Vacina , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL , Vacinas Sintéticas/imunologia
7.
Sci Adv ; 5(1): eaav1882, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30613781

RESUMO

An effective vaccine to the antigenically diverse hepatitis C virus (HCV) must target conserved immune epitopes. Here, we investigate cross-neutralization of HCV genotypes by broadly neutralizing antibodies (bNAbs) encoded by the relatively abundant human gene family V H 1-69. We have deciphered the molecular requirements for cross-neutralization by this unique class of human antibodies from crystal structures of HCV E2 in complex with bNAbs. An unusually high binding affinity is found for germ line-reverted versions of VH1-69 precursor antibodies, and neutralization breadth is acquired during affinity maturation. Deep sequencing analysis of an HCV-immune B cell repertoire further demonstrates the importance of the V H 1-69 gene family in the generation of HCV bNAbs. This study therefore provides critical insights into immune recognition of HCV with important implications for rational vaccine design.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/imunologia , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/imunologia , Hepatite C/imunologia , Afinidade de Anticorpos/imunologia , Sítios de Ligação , Doadores de Sangue , Linhagem Celular Tumoral , Reações Cruzadas/imunologia , Epitopos/química , Hepatite C/virologia , Humanos , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Vacinas contra Hepatite Viral/genética , Vacinas contra Hepatite Viral/imunologia
8.
Methods Mol Biol ; 1911: 295-304, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30593634

RESUMO

The hepatitis C virus (HCV) envelope glycoproteins, E1 and E2, are crucial for HCV assembly and entry, and are promising vaccine antigens. However, they are challenging to study because of technical difficulties in protein production and in quality control for protein folding and glycosylation. To study E1 and E2 in different experimental systems, e.g. infected cells, virus culture, virus-like particles, and clinical samples, a standardized method to accurately quantify the glycoproteins will be essential for most research projects. Here we outline a sensitive assay based on dual-color fluorescence immunoblot and the Odyssey imaging system to detect and quantify HCV E1 and E2 glycoproteins either using a purified E1E2 complex, or an engineered protein standard containing E1 and E2 at equal molar ratio. The method is capable of simultaneously detecting and quantifying as little as 7 ng of E1 and 5 ng of E2 in HCV pseudoparticles, and will be useful to quantify E1 and E2 from a wide variety of samples.


Assuntos
Hepacivirus/química , Hepatite C/virologia , Immunoblotting/métodos , Proteínas do Envelope Viral/análise , Animais , Linhagem Celular , Fluorescência , Humanos
9.
Methods Mol Biol ; 1911: 381-393, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30593640

RESUMO

The envelope glycoproteins E1 and E2 of hepatitis C virus form a heterodimeric complex on the viral surface. They are the targets of neutralizing antibodies and are being investigated as potential vaccine antigens. Because of the high level of cysteine residues and N-glycosylation sites in the polypeptide sequences, it is technically challenging to produce pure, folded recombinant E1, E2, and E1E2 complex for downstream analysis. In this chapter, the methods we used to isolate a panel of human antibodies specific to diverse antigenic regions on the glycoproteins are discussed. The antibodies have been found to be valuable reagents for the study of HCV envelope glycoproteins, including the determination of the first E2 core domain structure.


Assuntos
Técnicas de Visualização da Superfície Celular/métodos , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/isolamento & purificação , Proteínas do Envelope Viral/imunologia , Bacteriófagos/genética , Bacteriófagos/metabolismo , Técnicas de Visualização da Superfície Celular/instrumentação , Epitopos/imunologia , Hepacivirus/metabolismo , Hepatite C/sangue , Hepatite C/imunologia , Hepatite C/prevenção & controle , Anticorpos Anti-Hepatite C/imunologia , Humanos , Imunogenicidade da Vacina , Domínios Proteicos , Proteínas do Envelope Viral/química , Vacinas contra Hepatite Viral/imunologia , Vacinas contra Hepatite Viral/uso terapêutico
10.
Nano Lett ; 18(12): 7832-7838, 2018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30461280

RESUMO

Elicitation of neutralizing antibody responses against hepatitis C virus (HCV) has been a challenging goal. While the E2 subunit of the HCV envelope glycoprotein complex is a promising target for generating cross-genotype neutralizing antibodies, vaccinations with soluble E2 immunogens generally induce weak neutralizing antibody responses. Here, E2 immunogens (i.e., E2.661 and E2c.661) were loaded into lipid-based nanovaccines and examined for induction of neutralizing antibody responses. Compared with soluble E2 immunogens, E2 nanoparticles elicited 6- to 20-fold higher E2-specific serum IgG titers in mice. Importantly, E2 vaccine nanoparticles analyzed at a single particle level with a flow cytometry-based method revealed interesting dynamics between epitope display on the surfaces of nanoparticles in vitro and induction of neutralizing antibody responses in vivo. E2c.661 nanoparticles that are preferentially bound by a broadly neutralizing antibody, HCV1, in vitro elicit neutralizing antibody responses against both autologous and heterologous HCV virions in vivo. In stark contrast, E2.661 nanoparticles with reduced HCV1-antibody binding in vitro mainly induce autologous neutralizing antibody responses in vivo. These results show that rationale antigen design coupled with interrogation of epitope display on vaccine nanoparticles at a single particle level may aid in vaccine development toward achieving neutralizing antibody responses in vivo.


Assuntos
Anticorpos Neutralizantes/imunologia , Portadores de Fármacos/química , Hepacivirus/imunologia , Hepatite C/prevenção & controle , Nanopartículas/química , Proteínas do Envelope Viral/administração & dosagem , Vacinas contra Hepatite Viral/administração & dosagem , Animais , Formação de Anticorpos , Hepatite C/imunologia , Humanos , Imunoglobulina G/imunologia , Camundongos , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/farmacologia , Vacinas contra Hepatite Viral/imunologia , Vacinas contra Hepatite Viral/farmacologia
11.
PLoS Pathog ; 13(12): e1006735, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29253863

RESUMO

The hepatitis C virus (HCV) envelope glycoproteins E1 and E2 form a non-covalently linked heterodimer on the viral surface that mediates viral entry. E1, E2 and the heterodimer complex E1E2 are candidate vaccine antigens, but are technically challenging to study because of difficulties in producing natively folded proteins by standard protein expression and purification methods. To better comprehend the antigenicity of these proteins, a library of alanine scanning mutants comprising the entirety of E1E2 (555 residues) was created for evaluating the role of each residue in the glycoproteins. The mutant library was probed, by a high-throughput flow cytometry-based assay, for binding with the co-receptor CD81, and a panel of 13 human and mouse monoclonal antibodies (mAbs) that target continuous and discontinuous epitopes of E1, E2, and the E1E2 complex. Together with the recently determined crystal structure of E2 core domain (E2c), we found that several residues in the E2 back layer region indirectly impact binding of CD81 and mAbs that target the conserved neutralizing face of E2. These findings highlight an unexpected role for the E2 back layer in interacting with the E2 front layer for its biological function. We also identified regions of E1 and E2 that likely located at or near the interface of the E1E2 complex, and determined that the E2 back layer also plays an important role in E1E2 complex formation. The conformation-dependent reactivity of CD81 and the antibody panel to the E1E2 mutant library provides a global view of the influence of each amino acid (aa) on E1E2 expression and folding. This information is valuable for guiding protein engineering efforts to enhance the antigenic properties and stability of E1E2 for vaccine antigen development and structural studies.


Assuntos
Hepacivirus/genética , Hepacivirus/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais , Anticorpos Antivirais , Antígenos Virais/genética , Mapeamento de Epitopos , Epitopos/química , Epitopos/genética , Hepacivirus/fisiologia , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Mutagênese , Engenharia de Proteínas , Dobramento de Proteína , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Tetraspanina 28/metabolismo , Proteínas do Envelope Viral/química , Vacinas contra Hepatite Viral/genética , Vacinas contra Hepatite Viral/imunologia , Internalização do Vírus
12.
mBio ; 8(1)2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28246356

RESUMO

Broadly neutralizing antibodies (bNAbs) have provided valuable insights into the humoral immune response to HIV-1. While rationally designed epitope scaffolds and well-folded gp140 trimers have been proposed as vaccine antigens, a comparative understanding of their antibody responses has not yet been established. In this study, we probed antibody responses to the N332 supersite and the membrane-proximal external region (MPER) in the context of heterologous protein scaffolds and native-like gp140 trimers. Ferritin nanoparticles and fragment crystallizable (Fc) regions were utilized as multivalent carriers to display scaffold antigens with grafted N332 and MPER epitopes, respectively. Trimeric scaffolds were also identified to stabilize the MPER-containing BG505 gp140.681 trimer in a native-like conformation. Following structural and antigenic evaluation, a subset of scaffold and trimer antigens was selected for immunization in BALB/c mice. Serum binding revealed distinct patterns of antibody responses to these two bNAb targets presented in different structural contexts. For example, the N332 nanoparticles elicited glycan epitope-specific antibody responses that could also recognize the native trimer, while a scaffolded BG505 gp140.681 trimer generated a stronger and more rapid antibody response to the trimer apex than its parent gp140.664 trimer. Furthermore, next-generation sequencing (NGS) of mouse splenic B cells revealed expansion of antibody lineages with long heavy-chain complementarity-determining region 3 (HCDR3) loops upon activation by MPER scaffolds, in contrast to the steady repertoires primed by N332 nanoparticles and a soluble gp140.664 trimer. These findings will facilitate the future development of a coherent vaccination strategy that combines both epitope-focused and trimer-based approaches.IMPORTANCE Both epitope-focused and trimer-based strategies are currently being explored in HIV-1 vaccine development, which aims to elicit broadly neutralizing antibodies (bNAbs) targeting conserved epitopes on the viral envelope (Env). However, little is known about the differences in antibody response to these bNAb targets presented by foreign scaffolds and native Env. In this study, a systematic effort was undertaken to design multivalent epitope scaffolds and soluble gp140.681 trimers with a complete antigenic surface, and to comparatively analyze the antibody responses elicited by these antigens to the N332 supersite and MPER in a mouse model. This study will inform both epitope-focused and trimer-based vaccine design and will facilitate integration of the two vaccine strategies.


Assuntos
Anticorpos Neutralizantes/sangue , Epitopos/imunologia , Anticorpos Anti-HIV/sangue , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Formação de Anticorpos , Camundongos , Camundongos Endogâmicos BALB C
13.
Proc Natl Acad Sci U S A ; 113(45): 12768-12773, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27791120

RESUMO

Hepatitis C virus (HCV) is a major cause of liver disease, affecting over 2% of the world's population. The HCV envelope glycoproteins E1 and E2 mediate viral entry, with E2 being the main target of neutralizing antibody responses. Structural investigations of E2 have produced templates for vaccine design, including the conserved CD81 receptor-binding site (CD81bs) that is a key target of broadly neutralizing antibodies (bNAbs). Unfortunately, immunization with recombinant E2 and E1E2 rarely elicits sufficient levels of bNAbs for protection. To understand the challenges for eliciting bNAb responses against the CD81bs, we investigated the E2 CD81bs by electron microscopy (EM), hydrogen-deuterium exchange (HDX), molecular dynamics (MD), and calorimetry. By EM, we observed that HCV1, a bNAb recognizing the N-terminal region of the CD81bs, bound a soluble E2 core construct from multiple angles of approach, suggesting components of the CD81bs are flexible. HDX of multiple E2 constructs consistently indicated the entire CD81bs was flexible relative to the rest of the E2 protein, which was further confirmed by MD simulations. However, E2 has a high melting temperature of 84.8 °C, which is more akin to proteins from thermophilic organisms. Thus, recombinant E2 is a highly stable protein overall, but with an exceptionally flexible CD81bs. Such flexibility may promote induction of nonneutralizing antibodies over bNAbs to E2 CD81bs, underscoring the necessity of rigidifying this antigenic region as a target for rational vaccine design.

14.
Sci Rep ; 5: 12501, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26238798

RESUMO

Development of a prophylactic vaccine against hepatitis C virus (HCV) has been hampered by the extraordinary viral diversity and the poor host immune response. Scaffolding, by grafting an epitope onto a heterologous protein scaffold, offers a possible solution to epitope vaccine design. In this study, we designed and characterized epitope vaccine antigens for the antigenic sites of HCV envelope glycoproteins E1 (residues 314-324) and E2 (residues 412-423), for which neutralizing antibody-bound structures are available. We first combined six structural alignment algorithms in a "scaffolding meta-server" to search for diverse scaffolds that can structurally accommodate the HCV epitopes. For each antigenic site, ten scaffolds were selected for computational design, and the resulting epitope scaffolds were analyzed using structure-scoring functions and molecular dynamics simulation. We experimentally confirmed that three E1 and five E2 epitope scaffolds bound to their respective neutralizing antibodies, but with different kinetics. We then investigated a "multivalent scaffolding" approach by displaying 24 copies of an epitope scaffold on a self-assembling nanoparticle, which markedly increased the avidity of antibody binding. Our study thus demonstrates the utility of a multi-scale scaffolding strategy in epitope vaccine design and provides promising HCV immunogens for further assessment in vivo.


Assuntos
Antígenos Virais/química , Epitopos/química , Hepacivirus/química , Proteínas Recombinantes/química , Proteínas do Envelope Viral/química , Vacinas contra Hepatite Viral/genética , Sequência de Aminoácidos , Anticorpos Neutralizantes/biossíntese , Anticorpos Neutralizantes/metabolismo , Antígenos Virais/genética , Antígenos Virais/imunologia , Desenho de Fármacos , Mapeamento de Epitopos , Epitopos/genética , Epitopos/imunologia , Expressão Gênica , Células HEK293 , Hepacivirus/genética , Hepacivirus/imunologia , Hepatite C/imunologia , Hepatite C/prevenção & controle , Hepatite C/virologia , Humanos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/imunologia
15.
J Mol Biol ; 427(16): 2617-28, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26135247

RESUMO

Hepatitis C virus (HCV) is a positive-strand RNA virus within the Flaviviridae family. The viral "spike" of HCV is formed by two envelope glycoproteins, E1 and E2, which together mediate viral entry by engaging host receptors and undergoing conformational changes to facilitate membrane fusion. While E2 can be readily produced in the absence of E1, E1 cannot be expressed without E2 and few reagents, including monoclonal antibodies (mAbs), are available for study of this essential HCV glycoprotein. A human mAb to E1, IGH526, was previously reported to cross-neutralize different HCV isolates, and therefore, we sought to further characterize the IGH526 neutralizing epitope to obtain information for vaccine design. We found that mAb IGH526 bound to a discontinuous epitope, but with a major component corresponding to E1 residues 314-324. The crystal structure of IGH526 Fab with this E1 glycopeptide at 1.75Å resolution revealed that the antibody binds to one face of an α-helical peptide. Single mutations on the helix substantially lowered IGH526 binding but did not affect neutralization, indicating either that multiple mutations are required or that additional regions are recognized by the antibody in the context of the membrane-associated envelope oligomer. Molecular dynamics simulations indicate that the free peptide is flexible in solution, suggesting that it requires stabilization for use as a candidate vaccine immunogen.


Assuntos
Epitopos/ultraestrutura , Anticorpos Anti-Hepatite C/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/ultraestrutura , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Sítios de Ligação de Anticorpos , Linhagem Celular , Cristalografia por Raios X , Mapeamento de Epitopos , Epitopos/imunologia , Células HEK293 , Hepacivirus/imunologia , Humanos , Simulação de Dinâmica Molecular
16.
Sci Transl Med ; 6(254): 254ra129, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25232181

RESUMO

In most exposed individuals, hepatitis C virus (HCV) establishes a chronic infection; this long-term infection in turn contributes to the development of liver diseases such as cirrhosis and hepatocellular carcinoma. The role of antibodies directed against HCV in disease progression is poorly understood. Neutralizing antibodies (nAbs) can prevent HCV infection in vitro and in animal models. However, the effects of nAbs on an established HCV infection are unclear. We demonstrate that three broadly nAbs-AR3A, AR3B, and AR4A-delivered with adeno-associated viral vectors can confer protection against viral challenge in humanized mice. Furthermore, we provide evidence that nAbs can abrogate an ongoing HCV infection in primary hepatocyte cultures and in a human liver chimeric mouse model. These results showcase a therapeutic approach to interfere with HCV infection by exploiting a previously unappreciated need for HCV to continuously infect new hepatocytes to sustain a chronic infection.


Assuntos
Anticorpos Neutralizantes/imunologia , Hepatite C Crônica/imunologia , Animais , Anticorpos Neutralizantes/uso terapêutico , Células Cultivadas , Dependovirus/genética , Genótipo , Hepacivirus/genética , Hepatite C Crônica/terapia , Hepatócitos/virologia , Humanos , Camundongos
17.
Hepatology ; 60(5): 1551-62, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25043937

RESUMO

UNLABELLED: Human monoclonal antibodies (HMAbs) with neutralizing capabilities constitute potential immune-based treatments or prophylaxis against hepatitis C virus (HCV). However, lack of cell culture-derived HCV (HCVcc) harboring authentic envelope proteins (E1/E2) has hindered neutralization investigations across genotypes, subtypes, and isolates. We investigated the breadth of neutralization of 10 HMAbs with therapeutic potential against a panel of 16 JFH1-based HCVcc-expressing patient-derived Core-NS2 from genotypes 1a (strains H77, TN, and DH6), 1b (J4, DH1, and DH5), 2a (J6, JFH1, and T9), 2b (J8, DH8, and DH10), 2c (S83), and 3a (S52, DBN, and DH11). Virus stocks used for in vitro neutralization analysis contained authentic E1/E2, with the exception of full-length JFH1 that acquired the N417S substitution in E2. The 50% inhibition concentration (IC50) for each HMAb against the HCVcc panel was determined by dose-response neutralization assays in Huh7.5 cells with antibody concentrations ranging from 0.0012 to 100 µg/mL. Interestingly, IC50 values against the different HCVcc's exhibited large variations among the HMAbs, and only three HMAbs (HC-1AM, HC84.24, and AR4A) neutralized all 16 HCVcc recombinants. Furthermore, the IC50 values for a given HMAb varied greatly with the HCVcc strain, which supports the use of a diverse virus panel. In cooperation analyses, HMAbs HC84.24, AR3A, and, especially HC84.26, demonstrated synergistic effects towards the majority of the HCVcc's when combined individually with AR4A. CONCLUSION: Through a neutralization analysis of 10 clinically relevant HMAbs against 16 JFH1-based Core-NS2 recombinants from genotypes 1a, 1b, 2a, 2b, 2c, and 3a, we identified at least three HMAbs with potent and broad neutralization potential. The neutralization synergism obtained when pooling the most potent HMAbs could have significant implications for developing novel strategies to treat and control HCV.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Hepacivirus/imunologia , Hepatite C/tratamento farmacológico , Linhagem Celular Tumoral , Genótipo , Hepacivirus/genética , Humanos , Testes de Neutralização
18.
J Virol ; 88(18): 10459-71, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24965471

RESUMO

UNLABELLED: The hepatitis C virus (HCV) envelope glycoprotein E1E2 complex is a candidate vaccine antigen. Previous immunization studies of E1E2 have yielded various results on its ability to induce virus-neutralizing antibodies in animal models and humans. The murine model has become a vital tool for HCV research owing to the development of humanized mice susceptible to HCV infection. In this study, we investigated the antibody responses of mice immunized with E1E2 and a novel soluble form of E1E2 (sE1E2) by a DNA prime and protein boost strategy. The results showed that sE1E2 elicited higher antibody titers and a greater breadth of reactivity than the wild-type cell-associated E1E2. However, immune sera elicited by either immunogen were only weakly neutralizing. In order to understand the contrasting results of binding and serum neutralizing activities, epitopes targeted by the polyclonal antibody responses were mapped and monoclonal antibodies (MAbs) were generated. The results showed that the majority of serum antibodies were directed to the E1 region 211 to 250 and the E2 regions 421 to 469, 512 to 539, 568 to 609, and 638 to 651, instead of the well-known immunodominant E2 hypervariable region 1 (HVR1). Unexpectedly, in MAb analysis, ∼ 12% of MAbs isolated were specific to the conserved E2 antigenic site 412 to 423, and 85% of them cross-neutralized multiple HCV isolates. The epitopes recognized by these MAbs are similar but distinct from the previously reported HCV1 and AP33 broadly neutralizing epitopes. In conclusion, E1E2 can prime B cells specific to conserved neutralizing epitopes, but the levels of serum neutralizing antibodies elicited are insufficient for effective virus neutralization. The sE1E2 constructs described in this study can be a useful template for rational antigen engineering. IMPORTANCE: Hepatitis C virus infects 2 to 3% of the world's population and is a leading cause of liver failures and the need for liver transplantation. The virus envelope glycoprotein complex E1E2 produced by detergent extraction of cells overexpressing the protein was evaluated in a phase I clinical trial but failed to induce neutralizing antibodies in most subjects. In this study, we designed a novel form of E1E2 which is secreted from cells and is soluble and compared it to wild-type E1E2 by DNA immunization of mice. The results showed that this new E1E2 is more immunogenic than wild-type E1E2. Detailed mapping of the antibody responses revealed that antibodies to the conserved E2 antigenic site 412 to 423 were elicited but the serum concentrations were too low to neutralize the virus effectively. This soluble E1E2 provides a new reagent for studying HCV and for rational vaccine design.


Assuntos
Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/imunologia , Hepatite C/imunologia , Proteínas do Envelope Viral/imunologia , Motivos de Aminoácidos , Animais , Mapeamento de Epitopos , Feminino , Hepacivirus/química , Hepacivirus/genética , Hepatite C/virologia , Humanos , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
19.
Science ; 342(6162): 1090-4, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24288331

RESUMO

Hepatitis C virus (HCV), a Hepacivirus, is a major cause of viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV envelope glycoproteins E1 and E2 mediate fusion and entry into host cells and are the primary targets of the humoral immune response. The crystal structure of the E2 core bound to broadly neutralizing antibody AR3C at 2.65 angstroms reveals a compact architecture composed of a central immunoglobulin-fold ß sandwich flanked by two additional protein layers. The CD81 receptor binding site was identified by electron microscopy and site-directed mutagenesis and overlaps with the AR3C epitope. The x-ray and electron microscopy E2 structures differ markedly from predictions of an extended, three-domain, class II fusion protein fold and therefore provide valuable information for HCV drug and vaccine design.


Assuntos
Proteínas do Envelope Viral/química , Anticorpos Neutralizantes/química , Antivirais/química , Sítios de Ligação , Cristalografia por Raios X , Desenho de Fármacos , Epitopos/química , Epitopos/genética , Humanos , Fragmentos Fab das Imunoglobulinas/química , Mutagênese Sítio-Dirigida , Dobramento de Proteína , Estrutura Terciária de Proteína , Tetraspanina 28/química , Proteínas do Envelope Viral/imunologia , Vacinas contra Hepatite Viral/química , Vacinas contra Hepatite Viral/imunologia
20.
J Virol ; 86(23): 13085-8, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22973046

RESUMO

We have determined the crystal structure of the broadly neutralizing antibody (bnAb) AP33, bound to a peptide corresponding to hepatitis C virus (HCV) E2 envelope glycoprotein antigenic site 412 to 423. Comparison with bnAb HCV1 bound to the same epitope reveals a different angle of approach to the antigen by bnAb AP33 and slight variation in its ß-hairpin conformation of the epitope. These structures establish two different modes of binding to E2 that antibodies adopt to neutralize diverse HCV.


Assuntos
Anticorpos Neutralizantes/química , Hepacivirus/genética , Modelos Moleculares , Conformação Proteica , Proteínas do Envelope Viral/química , Anticorpos Neutralizantes/metabolismo , Epitopos/química , Epitopos/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA