RESUMO
Klebsiella variicola, a member of Klebsiella pneumoniae complex, is found to infect plants, insects, and animals and is considered an emerging pathogen in humans. While antibiotic resistance is often prevalent among K. variicola isolates from humans, this has not been thoroughly investigated in isolates from nonhuman sources. Prior evidence suggests that K. variicola can be transmitted between agricultural products as well as between animals, and the use of antibiotics in agriculture has increased antibiotic resistance in other emerging pathogens. Furthermore, in animals that contain K. variicola as a normal member of the rumen microbiota, the same bacteria can also cause infections, such as clinical mastitis in dairy cows. Here, we describe K. variicola UFMG-H9 and UFMG-H10, both isolated from the urine of healthy Gyr heifers. These two genomes represent the first isolates from the urine of cattle and exhibit greater similarity with strains from the human urinary tract than isolates from bovine fecal or milk samples. Unique to the UFMG-H9 genome is the presence of flagellar genes, the first such observation for K. variicola. Neither of the sampled animals had symptoms associated with K. variicola infection, even though genes associated with virulence and antibiotic resistance were identified in both strains. Both strains were resistant to amoxicillin, erythromycin, and vancomycin, and UFMG-H10 is resistant to fosfomycin. The observed resistances emphasize the concern regarding the emergence of this species as a human pathogen given its circulation in healthy livestock animals. IMPORTANCE Klebsiella variicola is an opportunistic pathogen in humans. It also has been associated with bovine mastitis, which can have significant economic effects. While numerous isolates have been sequenced from human infections, only 12 have been sequenced from cattle (fecal and milk samples) to date. Recently, we discovered the presence of K. variicola in the urine of two healthy heifers, the first identification of K. variicola in the bovine urinary tract and the first confirmed K. variicola isolate encoding for flagella-mediated motility. Here, we present the genome sequences and analysis of these isolates. The bovine urinary genomes are more similar to isolates from the human urinary tract than they are to other isolates from cattle, suggesting niche specialization. The presence of antibiotic resistance genes is concerning, as prior studies have found transmission between animals. These findings are important to understand the circulation of K. variicola in healthy livestock animals.
Assuntos
Infecções por Klebsiella , Animais , Antibacterianos/farmacologia , Bovinos , Farmacorresistência Bacteriana Múltipla/genética , Feminino , Humanos , Klebsiella/genética , Infecções por Klebsiella/microbiologia , Infecções por Klebsiella/veterinária , Klebsiella pneumoniae/genética , FilogeniaRESUMO
The study of livestock microbiota has immediate benefits for animal health as well as mitigating food contamination and emerging pathogens. While prior research has indicated the gastrointestinal tract of cattle as the source for many zoonoses, including Shiga-toxin producing Escherichia coli and antibiotic resistant bacteria, the bovine urinary tract microbiota has yet to be thoroughly investigated. Here, we describe 5 E. coli and 4 Pseudomonas aeruginosa strains isolated from urine of dairy Gyr cattle. While both species are typically associated with urinary tract infections and mastitis, all of the animals sampled were healthy. The bovine urinary strains were compared to E. coli and P. aeruginosa isolates from other bovine samples as well as human urinary samples. While the bovine urinary E. coli isolates had genomic similarity to isolates from the gastrointestinal tract of cattle and other agricultural animals, the bovine urinary P. aeruginosa strains were most similar to human isolates suggesting niche adaptation rather than host adaptation. Examination of prophages harbored by these bovine isolates revealed similarity with prophages within distantly related E. coli and P. aeruginosa isolates from the human urinary tract. This suggests that related urinary phages may persist and/or be shared between mammals. Future studies of the bovine urinary microbiota are needed to ascertain if E. coli and P. aeruginosa are resident members of this niche and/or possible sources for emerging pathogens in humans.
RESUMO
Corynebacterium phoceense is a Gram-positive species previously isolated from human urine. Although other species from the same genus have been associated with urinary tract infections, C. phoceense is currently believed to be a non-pathogenic member of the urogenital microbiota. Prior to our study, only two isolates were described in the literature, and very little is known about the species. Here, we describe C. phoceense UFMG-H7, the first strain of this species isolated from the urine of healthy cattle. The genome for this isolate was produced and compared to the two other publicly available C. phoceense as well as other Corynebacterium genome assemblies. Our in-depth genomic analysis identified four additional publicly available genome assemblies that are representatives of the species, also isolated from the human urogenital tract. Although none of the strains have been associated with symptoms or disease, numerous genes associated with virulence factors are encoded. In contrast to related Corynebacterium species and Corynebacterium species from the bovine vaginal tract, all C. phoceense strains examined code for the SpaD-type pili suggesting adherence is essential for its persistence within the urinary tract. As the other C. phoceense strains analysed were isolated from the human urogenital tract, our results suggest that this species may be specific to this niche.
Assuntos
Corynebacterium/isolamento & purificação , Microbiota , Sistema Urogenital/microbiologia , Animais , Bovinos , Corynebacterium/classificação , Corynebacterium/genética , Genoma Bacteriano , Humanos , Urina/microbiologiaRESUMO
Staphylococcus aureus infections are of growing concern given the increased incidence of antibiotic resistant strains. Egypt, like several other countries, has seen alarming increases in methicillin-resistant S. aureus (MRSA) infections. This species can rapidly acquire genes associated with resistance, as well as virulence factors, through mobile genetic elements, including phages. Recently, we sequenced 56 S. aureus genomes from Alexandria Main University Hospital in Alexandria, Egypt, complementing 17 S. aureus genomes publicly available from other sites in Egypt. In the current study, we found that the majority (73.6%) of these strains contain intact prophages, including Biseptimaviruses, Phietaviruses, and Triaviruses. Further investigation of these prophages revealed evidence of horizontal exchange of the integrase for two of the prophages. These Egyptian S. aureus prophages are predicted to encode numerous virulence factors, including genes associated with immune evasion and toxins, including the Panton-Valentine leukocidin (PVL)-associated genes lukF-PV/lukS-PV. Thus, prophages are likely to be a major contributor to the virulence of S. aureus strains in circulation in Egypt.
Assuntos
Prófagos/isolamento & purificação , Fagos de Staphylococcus/isolamento & purificação , Staphylococcus aureus/virologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Egito , Humanos , Prófagos/classificação , Prófagos/genética , Infecções Estafilocócicas/microbiologia , Fagos de Staphylococcus/classificação , Fagos de Staphylococcus/genética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , VirulênciaRESUMO
While the gram-positive bacterium Vagococcus fluvialis has been isolated from the environment as well as fish, birds, and mammals, very little is known about the species. V. fluvialis is believed to be a probiotic in fishes. However, within mammals, it is more frequently isolated from infectious tissue, including on rare occasions human and livestock lesions. Prior to the study described here, V. fluvialis had never been found in healthy bovine animals. Here, we present the complete genomes of V. fluvialis UFMG-H6, UFMG-H6B, and UFMG-H7, novel strains isolated from urine samples from healthy bovine females. These are the first genomes of mammalian isolates and the first description of V. fluvialis from urine. The genomes did not encode for any known virulence genes, suggesting that they may be commensal members of the urine microbiota.
Assuntos
Enterococcaceae , Peixes , Animais , Bovinos , Feminino , VirulênciaRESUMO
Citrobacter freundii is a pathogen associated with antibiotic resistance and severe infections in humans. Here, we report the draft genome sequence of C. freundii strain UFMG-H9, an isolate from urine from a healthy Gyr heifer.
RESUMO
Aeromonas caviae is an emerging pathogen in humans, causing intestinal infections. Here, we report Aeromonas caviae strain UFMG-H8, isolated from the urine of a healthy heifer (Gyr breed).
RESUMO
Enterobacter asburiae is part of the Enterobacter cloacae complex, related to nosocomial opportunistic infections in humans. Here, we report the draft genome of E. asburiae strain UFMG-H9, an isolate from urine from a healthy Gyr heifer.
RESUMO
Enterococcus casseliflavus is a commensal bacterium present in the intestinal microbiota of different animals. Previous studies have found that strains isolated from livestock are often resistant to many different antibiotics. Here, we present three E. casseliflavus strains, UFMG-H7, UFMG-H8, and UFMG-H9, isolated from urine collected from healthy dairy heifers in Brazil.
RESUMO
Members of the Staphylococcus genus are known pathogens causing mastitis in dairy cows, which results in major economic losses. Here, we present Staphylococcus epidermidis UFMG-H7, Staphylococcus hominis UFMG-H7B, and Staphylococcus sciuri UFMG-H6, isolated from the urine of healthy purebred Gyr heifers.
RESUMO
Describing the bovine vaginal microbiota is essential to better understand its physiology and its impact on health maintenance. Despite the economic importance of reproduction of these animals, bovine vaginal microbial community is still poorly described in comparison with rumen microbiome. Previous studies of our group described the vaginal microbiota of Nellore, an important Bos taurus indicus breed, using metagenomics. In order to better understand this microbiota, the present work aims to investigate another important breed, Gyr. Results have shown bacterial dominance over Archaea and Fungi was observed, with the most abundant bacterial phylum (Firmicutes) representing 40-50% of bacterial population, followed by Bacteroidetes, Proteobacteria, and Actinobacteria. The Fungi kingdom had the Mycosphaerella genus as its main representative, followed by Cladosporium. Archaea were observed at a very low abundance in all animals, with a high relative abundance of Methanobrevibacter genus. These results demonstrate a high microbial diversity on vaginal tract of Gyr, as demonstrated for Nellore and different from the previously described for other species. Our results indicate a great similarity between vaginal microbiota of Nellore and Gyr despite the differences in animal handling and genetic improvement. As observed for both breeds, individual variation is the largest source of microbial diversity between animals.
Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Bovinos/microbiologia , Fungos/isolamento & purificação , Microbiota , Vagina/microbiologia , Animais , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Cruzamento , Bovinos/genética , Feminino , Fungos/classificação , Fungos/genética , Metagenômica , Filogenia , Rúmen/microbiologiaRESUMO
Understanding of microbial communities inhabiting cattle vaginal tract may lead to a better comprehension of bovine physiology and reproductive health being of great economic interest. Up to date, studies involving cattle microbiota are focused on the gastrointestinal tract, and little is known about the vaginal microbiota. This study aimed to investigate the vaginal microbiome in Nellore cattle, heifers and cows, pregnant and non-pregnant, using a culture independent approach. The main bacterial phyla found were Firmicutes (~40-50%), Bacteroidetes (~15-25%) and Proteobacteria (~5-25%), in addition to ~10-20% of non-classified bacteria. 45-55% of the samples were represented by only ten OTUs: Aeribacillus, Bacteroides, Clostridium, Ruminococcus, Rikenella, Alistipes, Bacillus, Eubacterium, Prevotella and non-classified bacteria. Interestingly, microbiota from all 20 animals could be grouped according to the respiratory metabolism of the main OTUs found, creating three groups of vaginal microbiota in cattle. Archaeal samples were dominated by the Methanobrevibacter genus (Euryarchaeota, ~55-70%). Ascomycota was the main fungal phylum (~80-95%) and Mycosphaerella the most abundant genus (~70-85%). Hormonal influence was not clear, but a tendency for the reduction of bacterial and increase of archaeal populations in pregnant animals was observed. Eukaryotes did not vary significantly between pregnant and non-pregnant animals, but tended to be more abundant on cows than on heifers. The present work describes a great microbial variability in the vaginal community among the evaluated animals and groups (heifers and cows, pregnant and non-pregnant), which is significantly different from the findings previously reported using culture dependent methods, pointing out the need for further studies on this issue. The microbiome found also indicates that the vaginal colonization appears to be influenced by the gastrointestinal community.