Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Pharm Pharmacol ; 51(5): 565-76, 1999 May.
Artigo em Inglês | MEDLINE | ID: mdl-10411216

RESUMO

The potential of liposomes as an in-vivo ophthalmic drug delivery system for acyclovir was investigated. The drug-membrane interaction was evaluated by means of differential scanning calorimetry analysis. These experiments showed that acyclovir is able to interact with both positively and negatively charged membranes via electrostatic or hydrogen bonds. No interaction was observed with neutral membranes made up of dipalmitoylphosphatidylcholine. Different liposome preparation procedures were carried out to encapsulate acyclovir. The drug encapsulation mainly depends on the amount of water which the liposome system is able to entrap. In the case of multilamellar vesicles, charged systems showed the highest encapsulation efficiency. No particular difference in the encapsulation efficiency was observed for oligolamellar vesicles prepared with the reverse-phase evaporation technique. Oligolamellar liposomes showed the highest acyclovir encapsulation parameters and had release profiles similar to those of multilamellar liposomes. In-vivo experiments using male New Zealand albino rabbits were carried out to evaluate the aqueous humour concentration of acyclovir bioavailability. The most suitable ophthalmic drug delivery system was oligolamellar systems made up of dipalmitoylphosphatidylcholine-cholesterol-dimethyldioctadecyl glycerole bromide (7:4:1 molar ratio), which presented the highest encapsulation capacity and were able to deliver greater amounts of the drug into the aqueous humour than a saline acyclovir solution or a physical liposome/drug blend.


Assuntos
Aciclovir/farmacocinética , Córnea/metabolismo , Absorção , Animais , Antivirais/farmacocinética , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Lipossomos , Masculino , Fenômenos Fisiológicos Oculares , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA