Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Adv Mater ; 36(2): e2307564, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37708463

RESUMO

Hybrid organic-inorganic perovskites (PVKs) are among the most promising materials for optoelectronic applications thanks to their outstanding photophysical properties and easy synthesis. Herein, a new PVK-based thermochromic composite is demonstrated. It can reversibly switch from a transparent state (transmittance > 80%) at room temperature to a colored state (transmittance < 10%) at high temperature, with very fast kinetics, taking only a few seconds to go from the bleached to the colored state (and vice versa). X-ray diffraction, Fourier-transform infrared spectroscopy, differential scanning calometry, rheological, and optical measurements carried out during heating/cooling cycles reveal that thermochromism in the material is based on a reversible process of PVK disassembly/assembly mediated by intercalating polymeric chains, through the formation and breaking of hydrogen bonds between polymer and perovskite. Therefore, differently from other thermochromic perovskites, that generally work with the adsorption/desorption of volatile molecules, the system is able to perform several heating/cooling cycles regardless of environmental conditions. The color and transition temperature (from 70 to 120 °C) can be tuned depending on the type of perovskite. Moreover, this thermochromic material is printable and can be deposited by cheap techniques, paving the way for a new class of smart coatings with an unprecedented range of colors.

2.
Gels ; 9(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37102922

RESUMO

Bio-based polymers are attracting great interest due to their potential for several applications in place of conventional polymers. In the field of electrochemical devices, the electrolyte is a fundamental element that determines their performance, and polymers represent good candidates for developing solid-state and gel-based electrolytes toward the development of full-solid-state devices. In this context, the fabrication and characterization of uncrosslinked and physically cross-linked collagen membranes are reported to test their potential as a polymeric matrix for the development of a gel electrolyte. The evaluation of the membrane's stability in water and aqueous electrolyte and the mechanical characterization demonstrated that cross-linked samples showed a good compromise in terms of water absorption capability and resistance. The optical characteristics and the ionic conductivity of the cross-linked membrane, after overnight dipping in sulfuric acid solution, demonstrated the potential of the reported membrane as an electrolyte for electrochromic devices. As proof of concept, an electrochromic device was fabricated by sandwiching the membrane (after sulfuric acid dipping) between a glass/ITO/PEDOT:PSS substrate and a glass/ITO/SnO2 substrate. The results in terms of optical modulation and kinetic performance of such a device demonstrated that the reported cross-linked collagen membrane could represent a valid candidate as a water-based gel and bio-based electrolyte for full-solid-state electrochromic devices.

3.
Angew Chem Int Ed Engl ; 61(22): e202201747, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35226780

RESUMO

Here we present a colloidal approach to synthesize bismuth chalcohalide nanocrystals (BiEX NCs, in which E=S, Se and X=Cl, Br, I). Our method yields orthorhombic elongated BiEX NCs, with BiSCl crystallizing in a previously unknown polymorph. The BiEX NCs display a composition-dependent band gap spanning the visible spectral range and absorption coefficients exceeding 105  cm-1 . The BiEX NCs show chemical stability at standard laboratory conditions and form colloidal inks in different solvents. These features enable the solution processing of the NCs into robust solid films yielding stable photoelectrochemical current densities under solar-simulated irradiation. Overall, our versatile synthetic protocol may prove valuable in accessing colloidal metal chalcohalide nanomaterials at large and contributes to establish metal chalcohalides as a promising complement to metal chalcogenides and halides for applied nanotechnology.

4.
Micromachines (Basel) ; 12(6)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199399

RESUMO

E-textiles represent an emerging technology aiming toward the development of fabric with augmented functionalities, enabling the integration of displays, sensors, and other electronic components into textiles. Healthcare, protective clothing, fashion, and sports are a few examples application areas of e-textiles. Light-emitting textiles can have different applications: sensing, fashion, visual communication, light therapy, etc. Light emission can be integrated with textiles in different ways: fabricating light-emitting fibers and planar light-emitting textiles or employing side-emitting polymer optical fibers (POFs) coupled with light-emitting diodes (LEDs). Different kinds of technology have been investigated: alternating current electroluminescent devices (ACELs), inorganic and organic LEDs, and light-emitting electrochemical cells (LECs). The different device working principles and architectures are discussed in this review, highlighting the most relevant aspects and the possible approaches for their integration with textiles. Regarding POFs, the methodology to obtain side emissions and the critical aspects for their integration into textiles are discussed in this review. The main applications of light-emitting fabrics are illustrated, demonstrating that LEDs, alone or coupled with POFs, represent the most robust technology. On the other hand, OLEDs (Organic LEDs) are very promising for the future of light-emitting fabrics, but some issues still need to be addressed.

5.
Nanotechnology ; 32(21)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33126233

RESUMO

Motivated by the technological relevance of tungsten oxide nanostructures as valuable materials for energy saving technology, electrochemical and electrochromic characteristics of greener processed nanostructured W18O49-based electrodes are discussed in this work. For the purpose, microwave-assisted water-dispersible W18O49nanorods have been synthesized and processed into nanostructured electrodes. An airbrushing technique has been adopted as a cost-effective large-area scalable methodology to deposit the W18O49nanorods onto conductive glass. This approach preserves the morphological and crystallographic habit of native nanorods and allows highly homogeneous transparent coating where good electronic coupling between nanowires is ensured by a mild thermal treatment (250 °C, 30 min). Morphological and structural characteristics of active material were investigated from the synthesis to the nanocrystal deposition process by transmission and scanning electron microscopy, x-ray diffraction, atomic force microscopy and Raman spectroscopy. The as-obtained nanostructured film exhibited good reversible electrochemical features through several intercalation-deintercalation cycles. The electrochromic properties were evaluated on the basis of spectro-electrochemical measurements and showed significant optical contrast in the near-infrared region and high coloration efficiency at 550 nm.

6.
Nanotechnology ; 32(4): 045703, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-32998125

RESUMO

Nanostructured thin films are widely investigated for application in multifunctional devices thanks to their peculiar optoelectronic properties. In this work anatase TiO2 nanoparticles (average diameter 10 nm) synthesised by a green aqueous sol-gel route are exploited to fabricate optically active electrodes for pseudocapacitive-electrochromic devices. In our approach, highly transparent and homogeneous thin films having a good electronic coupling between nanoparticles are prepared. These electrodes present a spongy-like nanostructure in which the dimension of native nanoparticles is preserved, resulting in a huge surface area. Cyclic voltammetry studies reveal that there are significant contributions to the total stored charge from both intercalation capacitance and pseudocapacitance, with a remarkable 50% of the total charge deriving from this second effect. Fast and reversible colouration occurs, with an optical modulation of ∼60% in the range of 315-1660 nm, and a colouration efficiency of 25.1 cm2 C-1 at 550 nm. This combination of pseudocapacitance and electrochromism makes the sol-gel derived titania thin films promising candidates for multifunctional 'smart windows'.

7.
Micromachines (Basel) ; 10(11)2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31683528

RESUMO

Electronic devices used for marine applications suffer from several issues that can compromise their performance. In particular, water absorption and permeation can lead to the corrosion of metal parts or short-circuits. The added mass due to the absorbed water affects the inertia and durability of the devices, especially for flexible and very thin micro-systems. Furthermore, the employment of such delicate devices underwater is unavoidably subjected to the adhesion of microorganisms and formation of biofilms that limit their reliability. Thus, the demand of waterproofing solutions has increased in recent years, focusing on more conformal, flexible and insulating coatings. This work introduces an evaluation of different polymeric coatings (parylene-C, poly-dimethyl siloxane (PDMS), poly-methyl methacrylate (PMMA), and poly-(vinylidene fluoride) (PVDF)) aimed at increasing the reliability of piezoelectric flexible microdevices used for sensing water motions or for scavenging wave energy. Absorption and corrosion tests showed that Parylene-C, while susceptible to micro-cracking during prolonged oscillating cycles, exhibits the best anti-corrosive behavior. Parylene-C was then treated with oxygen plasma and UV/ozone for modifying the surface morphology in order to evaluate the biofilm formation with different surface conditions. A preliminary characterization through a laser Doppler vibrometer allowed us to detect a reduction in the biofilm mass surface density after 35 days of exposure to seawater.

8.
ACS Appl Mater Interfaces ; 11(43): 39921-39929, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31577409

RESUMO

Nanocrystals (NCs) of transparent conducting oxides with a localized surface plasmon resonance (LSPR) in the near-infrared (NIR) spectral region show promising electrochromic properties for the development of a new generation of dynamic "smart windows". In this regard, we exploit thin films of F, In-codoped CdO (FICO) NCs as active coatings for electrochromic devices. The control over the dopants concentration in FICO NCs results in fine tuning of their LSPR across the NIR region of the electromagnetic spectrum. Highly transparent mesoporous electrodes were prepared from colloidal FICO NCs by in situ ligand exchange of the pristine organic capping ligands. This approach preserves the optical and electrical properties of native NCs and delivers highly homogeneous, nonscattering films with a good electronic coupling between the NCs. We achieved a dynamic control over the LSPR frequency by reversible electrochemical doping, hence a spectrally selective modulation of the optical transmittance in the NIR region of the solar spectrum, which carries nearly 50% of the whole solar heat. Spectroelectrochemical characterization, coloration efficiency, and switching kinetics results indicate that thin film based on FICO NCs are potential candidates for plasmonic electrochromic applications. Moreover, the high electron mobility and wide optical bandgap of FICO makes NCs of this material suitable for large-area devices capable of dynamically controlling the heat load coming from the solar infrared radiation, without affecting the visible light transmittance.

9.
ACS Nano ; 11(4): 3576-3584, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28328197

RESUMO

The reliable exploitation of localized surface plasmon resonance in transparent conductive oxides is being pursued to push the developement of an emerging class of advanced dynamic windows, which offer the opportunity to selectively and dynamically control the intensity of the incoming thermal radiation without affecting visible transparency. In this view, Nb-doped TiO2 colloidal nanocrystals are particularly promising, as they have a wide band gap and their plasmonic features can be finely tailored across the near-infrared region by varying the concentration of dopants. Four batches of Nb-doped TiO2 nanocrystals with different doping levels (from 0% to 15% of niobium content) have been used here to prepare highly transparent mesoporous electrodes for near-infrared selective electrochromic devices, capable of dynamically modulating the intensity of the transmitted radiation upon the application of a relatively small bias voltage. An engineered dual band electrochromic device (made of 10%-Nb-doped TiO2 nanocrystals) has been eventually fabricated. It was shown to provide two complementary spectroelectrochemical responses, which can be independently controlled through the intensity of the applied potential: a large variation of the optical transmittance in the near-infrared region (by the intensification of the localized surface plasmon scattering) was achievable in the 0-3 V voltage window, reaching values greater than 64% in the spectral range from 800 to 2000 nm, whereas the visible absorption could also be intensively varied at higher potentials (from 3 to 4 V), driven by Li intercalation into the TiO2 anatase lattice.

10.
Nanoscale ; 8(48): 20056-20065, 2016 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-27892590

RESUMO

Recent developments in the exploitation of transparent conductive oxide nanocrystals paved the way to the realization of a new class of electrochemical systems capable of selectively shielding the infrared heat loads carried by sunlight and prospected the blooming of a key enabling technology to be implemented in the next generation of "zero-energy" building envelopes. Here we report the fabrication of a set of electrochromic devices embodying an engineered nanostructured electrode made by high aspect-ratio tungsten oxide nanorods, which allow for selectively and dynamically controlling sunlight transmission over the near-infrared to visible range. Varying the intensity of applied voltage makes the spectral response of the device change across three different optical regimes, namely fully transparent, near-infrared only blocking and both visible and near-infrared blocking. It is demonstrated that the degree of reversible modulation of the thermal radiation entering the glazing element can approach a remarkable 85%, accompanied by only a modest reduction in the luminous transmittance.

11.
Inorg Chem ; 55(11): 5245-53, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27212146

RESUMO

A tetracoordinated redox couple, made by [Cu(2-mesityl-4,7-dimethyl-1,10-phenanthroline)2][PF6], 1, and its Cu(II) form [Cu(2-mesityl-4,7-dimethyl-1,10-phenanthroline)2][PF6]2, 2, has been synthesized, and its electrochemical and photochemical features have been investigated and compared with those of a previously published Cu(2+)/Cu(+) redox shuttle, namely, [Cu(2,9-dimethyl-1,10-phenanthroline)2][PF6], 3, and its pentacoordinated oxidized form [Cu(2,9-dimethyl-1,10-phenanthroline)2Cl][PF6], 4. The detrimental effect of the fifth Cl(-) ancillary ligand on the charge transfer kinetics of the redox shuttles has been exhaustively demonstrated. Appropriately balanced Cu-based electrolytes have been then formulated and tested in dye solar cells in combination with a π-extended benzothiadiazole dye. The bis-phenanthroline Cu-complexes, 1 and 2, have been found to provide an overall 4.4% solar energy conversion efficiency, which is more than twice that of the literature benchmark couple, 3 and 4, employing a Cl-coordinated oxidized species and even comparable with the performances of a I(-)/I3(-) electrolyte of analogous concentration. A fast counter-electrode reaction, due to the excellent electrochemical reversibility of 2, and a high electron collection efficiency, allowed through the efficient dye regeneration kinetics exerted by 1, represents two major characteristics of these copper-based electron mediators and may constitute a pivotal step toward the development of a next generation of copper-based efficient iodine-free redox shuttles.

12.
ACS Appl Mater Interfaces ; 7(7): 4283-9, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25647808

RESUMO

A spectroscopic investigation focusing on the charge generation and transport in inverted p-type perovskite-based mesoscopic (Ms) solar cells is provided in this report. Nanocrystalline nickel oxide and PCBM are employed respectively as hole transporting scaffold and hole blocking layer to sandwich a perovskite light harvester. An efficient hole transfer process from perovskite to nickel oxide is assessed, through time-resolved photoluminescence and photoinduced absorption analyses, for both the employed absorbing species, namely MAPbI3-xClx and MAPbI3. A striking relevant difference between p-type and n-type perovskite-based solar cells emerges from the study.

13.
ACS Appl Mater Interfaces ; 6(18): 15841-52, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25089649

RESUMO

Time-resolved photophysical and photoelectrochemical investigations have been carried out to compare the electron transfer dynamics of a 2-ß-substituted tetraarylporphyrinic dye (ZnB) and a 5,15-meso-disubstituted diarylporphyrinic one (ZnM) at the electrolyte/dye/TiO2 interface in PSSCs. Although the meso push-pull structural arrangement has shown, up to now, to have the best performing architecture for solar cell applications, we have obtained superior energy conversion efficiencies for ZnB (6.1%) rather than for ZnM (3.9%), by using the I(-)/I3(-)-based electrolyte. To gain deeper insights about these unexpected results, we have investigated whether the intrinsic structural features of the two different porphyrinic dyes can play a key role on electron transfer processes occurring at the dye-sensitized TiO2 interface. We have found that charge injection yields into TiO2 are quite similar for both dyes and that the regeneration efficiencies by I(-), are also comparable and in the range of 75-85%. Moreover, besides injection quantum yields above 80%, identical dye loading, for both ZnB and ZnM, has been evidenced by spectrophotometric measurements on transparent thin TiO2 layers after the same adsorption period. Conversely, major differences have emerged by DC and AC (electrochemical impedance spectroscopy) photoelectrochemical investigations, pointing out a slower charge recombination rate when ZnB is adsorbed on TiO2. This may result from its more sterically hindered macrocyclic core which, besides guaranteeing a decrease of π-staking aggregation of the dye, promotes a superior shielding of the TiO2 surface against charge recombination involving oxidized species of the electrolyte.

14.
ChemSusChem ; 7(9): 2659-69, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25056642

RESUMO

This study deals with the synthesis and characterization of two π-extended organic sensitizers (G1 and G2) for applications in dye-sensitized solar cells. The materials are designed with a D-A-π-A structure constituted by i) a triarylamine group as the donor part, ii) a dithienyl-benzothiadiazole chromophore followed by iii) a further ethynylene-thiophene (G1) or ethynylene-benzene (G2) π-spacer and iv) a cyano-acrylic moiety as acceptor and anchoring part. An unusual structural extension of the π-bridge characterizes these structures. The so-configured sensitizers exhibit a broad absorption profile, the origin of which is supported by density functional theory. The absence of hypsochromic shifts as a consequence of deprotonation as well as notable optical and electrochemical stabilities are also observed. Concerning the performances in devices, electrochemical impedance spectroscopy indicates that the structural modification of the π-spacer mainly increases the electron lifetime of G2 with respect to G1. In devices, this feature translates into a superior power conversion efficiency of G2, reaching 8.1%. These results are comparable to those recorded for N719 and are higher with respect to literature congeners, supporting further structural engineering of the π-bridge extension in the search for better performing π-extended organic sensitizers.


Assuntos
Corantes/química , Fontes de Energia Elétrica , Engenharia , Energia Solar , Tiadiazóis/química , Eletroquímica , Transporte de Elétrons , Modelos Moleculares , Conformação Molecular
15.
ACS Appl Mater Interfaces ; 6(4): 2471-8, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-24503380

RESUMO

We carry out an accurate computational analysis on the nature and distribution of electronic trap states in shape-tailored anatase TiO2 structures, investigating the effect of the morphology on the electronic structure. Linear nanocrystal models up to 6 nm in length with various morphologies, reproducing both flattened and elongated rod-shaped TiO2 nanocrystals, have been investigated by DFT calculations, to clarify the effect of the crystal facet percentage on the nanocrystal electronic structure, with particular reference to the energetics and distribution of trap states. The calculated densities of states below the conduction band edge have been very well fitted assuming an exponential distribution of energies and have been correlated with experimental capacitance data. In good agreement with the experimental phenomenology our calculations show that elongated rod-shaped nanocrystals with higher values of the ratio between (100) and (101) facets exhibit a relatively deeper distribution of trap states. Our results point at the crucial role of the nanocrystal morphology on the trap state density, highlighting the importance of a balance between the low-energy (101) and high-energy (100)/(001) surface facets in individual TiO2 nanocrystals.

16.
ACS Appl Mater Interfaces ; 6(3): 1933-43, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24401009

RESUMO

The peculiar architecture of a novel class of anisotropic TiO2(B) nanocrystals, which were synthesized by an surfactant-assisted nonaqueous sol-gel route, was profitably exploited to fabricate highly efficient mesoporous electrodes for Li storage. These electrodes are composed of a continuous spongy network of interconnected nanoscale units with a rod-shaped profile that terminates into one or two bulgelike or branch-shaped apexes spanning areas of about 5 × 10 nm(2). This architecture transcribes into a superior cycling performance (a charge capacitance of 222 mAh g(-1) was achieved by a carbon-free TiO2(B)-nanorods-based electrode vs 110 mAh g(-1) exhibited by a comparable TiO2-anatase electrode) and good chemical stability (more than 90% of the initial capacity remains after 100 charging/discharging cycles). Their outstanding lithiation/delithiation capabilities were also exploited to fabricate electrochromic devices that revealed an excellent coloration efficiency (130 cm(2) C(-1) at 800 nm) upon the application of 1.5 V as well as an extremely fast electrochromic switching (coloration time ∼5 s).

17.
Phys Chem Chem Phys ; 15(39): 16949-55, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24002434

RESUMO

An engineered bi-layered photoelectrode for dye solar cells has been developed which profitably employs two synergistic meso-ordered components, namely a thin meso-ordered TiO2 film and a main microparticles-based photoelectrode. The former has been deposited as an interfacial layer at the FTO-coated substrate and suppresses the back-transport reaction by blocking direct contact between the electrolyte and conductive oxide. The latter is made of hierarchical micro- and nano-structured building blocks prepared by template synthesis, which permits efficient light scattering without sacrificing the internal surface area. The optimization of light harvesting and charge recombination dynamics allowed us to achieve as high energy conversion efficiency as 9.7%.


Assuntos
Energia Solar , Titânio/química , Microscopia Eletrônica de Varredura , Nanopartículas/química , Porosidade , Difração de Raios X
18.
ACS Appl Mater Interfaces ; 5(15): 7139-45, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23815624

RESUMO

We present the fabrication of a multifunctional, hybrid organic-inorganic micropatterned device, which is capable to act as a stable photosensor and, at the same time, displaying inherent superhydrophobic self-cleaning wetting characteristics. In this framework several arrays of epoxy photoresist square micropillars have been fabricated on n-doped crystalline silicon substrates and subsequently coated with a poly(3-hexylthiophene-2,5-diyl) (P3HT) layer, giving rise to an array of organic/inorganic p-n junctions. Their photoconductivity has been measured under a solar light simulator at different illumination intensities. The current-voltage (I-V) curves show high rectifying characteristics, which are found to be directly correlated with the illumination intensity. The photoresponse occurs in extremely short times (within few tens of milliseconds range). The influence of the interpillar distance on the I-V characteristics of the sensors is also discussed. Moreover, the static and dynamic wetting properties of these organic/inorganic photosensors can be easily tuned by changing the pattern geometry. Measured static water contact angles range from 125° to 164°, as the distance between the pillars is increased from 14 to 120 µm while the contact angle hysteresis decreases from 36° down to 2°.

19.
Chem Commun (Camb) ; 48(25): 3109-11, 2012 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-22344250

RESUMO

Four different species of ionically conductive polymers were synthesized and successfully implemented to formulate novel quasi-solid electrolytes for dye solar cells. A power conversion efficiency superior to 85% of the correspondent liquid electrolyte as well as an excellent cell's stability was demonstrated after 500 days of storage.


Assuntos
Eletrólitos/química , Géis/química , Ácidos Polimetacrílicos/química , Energia Solar , Corantes
20.
J Am Chem Soc ; 133(47): 19216-39, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-22004553

RESUMO

A colloidal crystal-splitting growth regime has been accessed, in which TiO(2) nanocrystals, selectively trapped in the metastable anatase phase, can evolve to anisotropic shapes with tunable hyperbranched topologies over a broad size interval. The synthetic strategy relies on a nonaqueous sol-gel route involving programmed activation of aminolysis and pyrolysis of titanium carboxylate complexes in hot surfactant media via a simple multi-injection reactant delivery technique. Detailed investigations indicate that the branched objects initially formed upon the aminolysis reaction possess a strained monocrystalline skeleton, while their corresponding larger derivatives grown in the subsequent pyrolysis stage accommodate additional arms crystallographically decoupled from the lattice underneath. The complex evolution of the nanoarchitectures is rationalized within the frame of complementary mechanistic arguments. Thermodynamic pathways, determined by the shape-directing effect of the anatase structure and free-energy changes accompanying branching and anisotropic development, are considered to interplay with kinetic processes, related to diffusion-limited, spatially inhomogeneous monomer fluxes, lattice symmetry breaking at transient Ti(5)O(5) domains, and surfactant-induced stabilization. Finally, as a proof of functionality, the fabrication of dye-sensitized solar cells based on thin-film photoelectrodes that incorporate networked branched nanocrystals with intact crystal structure and geometric features is demonstrated. An energy conversion efficiency of 6.2% has been achieved with standard device configuration, which significantly overcomes the best performance ever approached with previously documented prototypes of split TiO(2) nanostructures. Analysis of the relevant photovoltaic parameters reveals that the utilized branched building blocks indeed offer light-harvesting and charge-collecting properties that can overwhelm detrimental electron losses due to recombination and trapping events.


Assuntos
Corantes/química , Nanopartículas/química , Energia Solar , Titânio/química , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA