Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Oral Oncol ; 148: 106635, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37988837

RESUMO

OBJECTIVES: Adenoid cystic carcinoma (ACC) is a rare type of cancer that typically arises from glandular tissues, most commonly in the salivary glands. Although relatively rare, it represents a serious clinical issue as the management of the disease is highly complex being the only therapeutic options represented by invasive surgery and/or radiotherapy. In the present study, we have explored the potential of galectin-3 binding protein (LGALS3BP) as a novel target for antibody-drug conjugate (ADC) therapy in ACC. MATERIALS AND METHODS: RNAseq was conducted on a panel of 10 ACC patient-derived xenografts (PDX)s tissues and 6 normal salivary glands to analyze LGALS3BP gene expression. Protein expression was assessed in ACC PDX and primary tumor tissues using immunohistochemistry. Anti-LGALS3BP ADC named 1959-sss/DM4, was tested in high LGALS3BP expressing ACC PDX model ST1502B. RESULTS: RNAseq analysis revealed that LGALS3BP expression was highly expressed in ACC PDX tissues compared to normal salivary gland tissues. As evaluated by immunohistochemical analysis, LGALS3BP protein was found to be heterogeneously expressed in 10 ACC PDX and in tumor tissues derived from a cohort of 37 ACC patients. Further, treatment with 1959-sss/DM4 ADC led to durable tumor growth inhibition (TGI) in 100% of animals without observed toxicity. CONCLUSIONS: Our study provides strong evidence that LGALS3BP is a promising therapeutic target for ACC, warranting further expedited preclinical and clinical investigation.


Assuntos
Antígenos de Neoplasias , Biomarcadores Tumorais , Carcinoma Adenoide Cístico , Neoplasias das Glândulas Salivares , Animais , Humanos , Biomarcadores Tumorais/antagonistas & inibidores , Carcinoma Adenoide Cístico/tratamento farmacológico , Modelos Animais de Doenças , Neoplasias das Glândulas Salivares/tratamento farmacológico , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos
2.
Mol Oncol ; 17(8): 1460-1473, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37195369

RESUMO

Glioblastoma multiforme (GBM) is a lethal disease characterized by an overall survival of about 1 year, making it one of the most aggressive tumours, with very limited therapeutic possibilities. Specific biomarkers for early diagnosis as well as innovative therapeutic strategies are urgently needed to improve the management of this deadly disease. In this work, we demonstrated that vesicular galectin-3-binding protein (LGALS3BP), a glycosylated protein overexpressed in a variety of human malignancies, is a potential GBM disease marker and can be efficiently targeted by a specific antibody-drug conjugate (ADC). Immunohistochemical analysis on patient tissues showed that LGALS3BP is highly expressed in GBM and, compared with healthy donors, the amount of vesicular but not total circulating protein is increased. Moreover, analysis of plasma-derived extracellular vesicles from mice harbouring human GBM revealed that LGALS3BP can be used for liquid biopsy as a marker of disease. Finally, an ADC targeting LGALS3BP, named 1959-sss/DM4, specifically accumulates in tumour tissue, producing a potent and dose-dependent antitumor activity. In conclusion, our work provides evidence that vesicular LGALS3BP is a potential novel GBM diagnostic biomarker and therapeutic target deserving further preclinical and clinical validation.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Imunoconjugados , Humanos , Animais , Camundongos , Glioblastoma/diagnóstico , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Biomarcadores Tumorais/metabolismo , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Vesículas Extracelulares/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Antígenos de Neoplasias/metabolismo
3.
Sensors (Basel) ; 23(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36679744

RESUMO

The demonstration of the first enzyme-based electrode to detect glucose, published in 1967 by S. J. Updike and G. P. Hicks, kicked off huge efforts in building sensors where biomolecules are exploited as native or modified to achieve new or improved sensing performances. In this growing area, bionanotechnology has become prominent in demonstrating how nanomaterials can be tailored into responsive nanostructures using biomolecules and integrated into sensors to detect different analytes, e.g., biomarkers, antibiotics, toxins and organic compounds as well as whole cells and microorganisms with very high sensitivity. Accounting for the natural affinity between biomolecules and almost every type of nanomaterials and taking advantage of well-known crosslinking strategies to stabilize the resulting hybrid nanostructures, biosensors with broad applications and with unprecedented low detection limits have been realized. This review depicts a comprehensive collection of the most recent biochemical and biophysical strategies for building hybrid devices based on bioconjugated nanomaterials and their applications in label-free detection for diagnostics, food and environmental analysis.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Nanoestruturas/química , Técnicas Biossensoriais/métodos , Biomarcadores
4.
J Funct Foods ; 89: 104932, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35003332

RESUMO

Native and chemically modified whey proteins and their peptide derivatives are encountering the interest of nutraceutical and pharmaceutical industries, due to the numerous properties, ranging from antimicrobial to immunological and antitumorigenic, that result in the possibility to employ milk and its protein components in a wide range of treatment and prevention strategies. Importantly, whey proteins were found to exert antiviral actions against different enveloped and non-enveloped viruses. Recently, the scientific community is focusing on these proteins, especially lactoferrin, since in vitro studies have demonstrated that they exert an important antiviral activity also against SARS-CoV-2. Up-to date, several studies are investigating the efficacy of lactoferrin and other whey proteins in vivo. Aim of this review is to shed light on the most relevant findings concerning the antiviral properties of whey proteins and their potential applications in human health, focussing on their application in prevention and treatment of SARS-CoV-2 infection.

5.
Front Pharmacol ; 12: 588306, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935695

RESUMO

A novel suicide gene therapy approach was tested in U87 MG glioblastoma multiforme cells. A 26nt G-rich double-stranded DNA aptamer (AS1411) was integrated into a vector at the 5' of a mammalian codon-optimized saporin gene, under CMV promoter. With this plasmid termed "APTSAP", the gene encoding ribosome-inactivating protein saporin is driven intracellularly by the glioma-specific aptamer that binds to cell surface-exposed nucleolin and efficiently kills target cells, more effectively as a polyethyleneimine (PEI)-polyplex. Cells that do not expose nucleolin at the cell surface such as 3T3 cells, used as a control, remain unaffected. Suicide gene-induced cell killing was not observed when the inactive saporin mutant SAPKQ DNA was used in the (PEI)-polyplex, indicating that saporin catalytic activity mediates the cytotoxic effect. Rather than apoptosis, cell death has features resembling autophagic or methuosis-like mechanisms. These main findings support the proof-of-concept of using PEI-polyplexed APTSAP for local delivery in rat glioblastoma models.

6.
Cancers (Basel) ; 13(2)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477367

RESUMO

Cancer is one of the primary causes of death worldwide. Tumour malignancy is related to tumor heterogeneity, which has been suggested to be due to a small subpopulation of tumor cells named cancer stem cells (CSCs). CSCs exert a key role in metastasis development, tumor recurrence, and also epithelial-mesenchymal transition, apoptotic resistance, self-renewal, tumorigenesis, differentiation, and drug resistance. Several current therapies fail to eradicate tumors due to the ability of CSCs to escape different programmed cell deaths. Thus, developing CSC-selective and programmed death-inducing therapeutic approaches appears to be of primary importance. In this review, we discuss the main programmed cell death occurring in cancer and the promising CSC-targeting agents developed in recent years. Even if the reported studies are encouraging, further investigations are necessary to establish a combination of agents able to eradicate CSCs or inhibit their growth and proliferation.

7.
Oncol Rep ; 45(2): 776-785, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33416143

RESUMO

Liver cancer (LC) is an aggressive disease with a markedly poor prognosis. Therapeutic options are limited, and, until recently the only FDA­approved agent for first­line treatment of patients with LC was the multi­kinase inhibitor sorafenib, which exhibits limited activity and an increased overall survival (OS) of only 3 months over placebo. Therefore, the development of alternative therapeutic molecules for the treatment of LC is an urgent medical need. Antibody­drug conjugates (ADCs) are an emerging class of novel anticancer agents, which have been developed recently for the treatment of malignant conditions, including LC, and are being studied in preclinical and clinical settings. Our group has recently generated an ADC [EV20/monomethyl auristatin F (MMAF)] by coupling the HER3 targeting antibody (EV20) to MMAF via a non­cleavable maleimidocaproyl linker. This ADC was revealed to possess potent therapeutic activity in melanoma and breast carcinoma. In the present study, using western blot and flow cytometric analysis, it was reported that HER­3 receptor was highly expressed in LC and activated by its ligand NRG­1ß in a panel of LC cell lines, thus indicating that this receptor may serve as a suitable target for ADC therapy. A novel ADC [EV20­sss­valine­citrulline (vc)/MMAF] was generated, in which the cytotoxic payload MMAF was site­specifically coupled to an engineered variant of EV20 via a vc cleavable linker. Cytotoxicity assays were performed to investigate in vitro antitumor activity of EV20­sss­vc/MMAF and it was compared to EV20/MMAF, which revealed only modest activity in LC.EV20­sss­vc/MMAF exhibited a significant cell killing activity in several LC cell lines. Additionally, in vivo xenograft experiments revealed that EV20­sss­vc/MMAF inhibited growth of LC tumors. The present data indicated that EV20­sss­vc/MMAF is a worthy candidate for the treatment of HER­3 positive LC.


Assuntos
Imunoconjugados/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Oligopeptídeos/farmacologia , Receptor ErbB-3/antagonistas & inibidores , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Imunoconjugados/uso terapêutico , Fígado/patologia , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Oligopeptídeos/uso terapêutico , Receptor ErbB-3/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Bioconjug Chem ; 32(1): 43-62, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33411522

RESUMO

Morpheeins are proteins that reversibly assemble into different oligomers, whose architectures are governed by conformational changes of the subunits. This property could be utilized in bionanotechnology where the building of nanometric and new high-ordered structures is required. By capitalizing on the adaptability of morpheeins to create patterned structures and exploiting their inborn affinity toward inorganic and living matter, "bottom-up" creation of nanostructures could be achieved using a single protein building block, which may be useful as such or as scaffolds for more complex materials. Peroxiredoxins represent the paradigm of a morpheein that can be applied to bionanotechnology. This review describes the structural and functional transitions that peroxiredoxins undergo to form high-order oligomers, e.g., rings, tubes, particles, and catenanes, and reports on the chemical and genetic engineering approaches to employ them in the generation of responsive nanostructures and nanodevices. The usefulness of the morpheeins' behavior is emphasized, supporting their use in future applications.


Assuntos
Nanoestruturas/química , Peroxirredoxinas/química , Proteínas/química , Biopolímeros/química , Peroxirredoxinas/metabolismo , Proteínas/metabolismo , Relação Estrutura-Atividade
9.
Cancers (Basel) ; 12(10)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076448

RESUMO

Neuroblastoma is the most common extra-cranial solid tumor in infants and children, which accounts for approximately 15% of all cancer-related deaths in the pediatric population. New therapeutic modalities are urgently needed. Antibody-Drug Conjugates (ADC)s-based therapy has been proposed as potential strategy to treat this pediatric malignancy. LGALS3BP is a highly glycosylated protein involved in tumor growth and progression. Studies have shown that LGALS3BP is enriched in extracellular vesicles (EV)s derived by most neuroblastoma cells, where it plays a critical role in preparing a favorable tumor microenvironment (TME) through direct cross talk between cancer and stroma cells. Here, we describe the development of a non-internalizing LGALS3BP ADC, named 1959-sss/DM3, which selectively targets LGALS3BP expressing neuroblastoma. 1959-sss/DM3 mediated potent therapeutic activity in different types of neuroblastoma models. Notably, we found that treatments were well tolerated at efficacious doses that were fully curative. These results offer preclinical proof-of-concept for an ADC targeting exosomal LGALS3BP approach for neuroblastomas.

10.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752132

RESUMO

In recent years, antibody-drug conjugates (ADCs) have become promising antitumor agents to be used as one of the tools in personalized cancer medicine. ADCs are comprised of a drug with cytotoxic activity cross-linked to a monoclonal antibody, targeting antigens expressed at higher levels on tumor cells than on normal cells. By providing a selective targeting mechanism for cytotoxic drugs, ADCs improve the therapeutic index in clinical practice. In this review, the chemistry of ADC linker conjugation together with strategies adopted to improve antibody tolerability (by reducing antigenicity) are examined, with particular attention to ADCs approved by the regulatory agencies (the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA)) for treating cancer patients. Recent developments in engineering Immunoglobulin (Ig) genes and antibody humanization have greatly reduced some of the problems of the first generation of ADCs, beset by problems, such as random coupling of the payload and immunogenicity of the antibody. ADC development and clinical use is a fast, evolving area, and will likely prove an important modality for the treatment of cancer in the near future.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Imunoconjugados/uso terapêutico , Neoplasias/tratamento farmacológico , Anticorpos Monoclonais/imunologia , Antineoplásicos/imunologia , Humanos , Imunoconjugados/imunologia , Neoplasias/imunologia , Neoplasias/patologia
11.
Biochim Biophys Acta Gen Subj ; 1864(8): 129617, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32304715

RESUMO

BACKGROUND: Proteins are efficient supramolecular scaffolds to drive self-assembly of nanomaterials into regular colloidal structures suitable for several purposes, including cell imaging and drug delivery. Proteins, in particular, can bind to gold nanoparticles (AuNPs) through van der Waals and electrostatic forces as well as coordination and hydrogen bonds leading their assembly into responsive nanostructures. METHODS: Bioconjugation of alkyne Raman tag-labeled 20 nm AuNPs with the ring-shaped protein Peroxiredoxin (Prx), characterized by a symmetric homo-oligomeric circular arrangement, has been investigated by absorption spectroscopy, transmission and scanning electron microscopy. The plasmonic behavior of the resulting hybrid assemblies has been assessed by Surface Enhanced Raman Scattering (SERS). RESULTS: The ring-shaped Prx molecules are demonstrated to adsorb onto the gold surface acting as "sticky" bio-linkers between adjacent nanoparticles to drive self-assembly into small colloidal AuNPs arrays. The arrays show nanometric interparticle gaps tailored by the protein ring thickness. The arrays exhibit improved optical activity due to SERS allowing detection of the Raman signals from both the protein and alkyne molecules. CONCLUSIONS: This method can be used to build up SERS-active nanostructures using Prx as both a bio-linker and platform for attaching dyes, two-dimensional materials, such as graphene, and other biomolecules including DNA and enzymes. GENERAL SIGNIFICANCE: The development of colloidal SERS nanostructures is considered a significant step forward in spectroscopic bioanalysis. Though protein-tailored nanofabrication is in a childhood stage, these results demonstrate the versatility of supramolecular proteins as tools to build-up nanostructures which are still impractical to obtain through top-down techniques.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Peroxirredoxinas/química , Adsorção , Alcinos/química , Animais , Modelos Moleculares , Tamanho da Partícula , Peroxirredoxinas/metabolismo , Schistosoma mansoni/enzimologia , Análise Espectral Raman , Propriedades de Superfície
12.
J Control Release ; 294: 176-184, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30553852

RESUMO

Galectin-3-binding protein (Gal-3BP) has been identified as a cancer and metastasis-associated, secreted protein that is expressed by the large majority of cancers. The present study describes a special type of non-internalizing antibody-drug-conjugates that specifically target Gal-3BP. Here, we show that the humanized 1959 antibody, which specifically recognizes secreted Gal-3BP, selectively localized around tumor but not normal cells. A site specific disulfide linkage with thiol-maytansinoids to unpaired cysteine residues of 1959, resulting in a drug-antibody ratio of 2, yielded an ADC product, which cured A375m melanoma bearing mice. ADC products based on the non-internalizing 1959 antibody may be useful for the treatment of several human malignancies, as the cognate antigen is abundantly expressed and secreted by several cancers, while being present at low levels in most normal adult tissues.


Assuntos
Antígenos de Neoplasias/imunologia , Biomarcadores Tumorais/imunologia , Imunoconjugados/uso terapêutico , Neoplasias/terapia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Imunoconjugados/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Coelhos
13.
Toxins (Basel) ; 10(2)2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29438358

RESUMO

Plant Ribosome-inactivating proteins (RIPs) including the type I RIP Saporin have been used for the construction of Immunotoxins (ITxs) obtained via chemical conjugation of the toxic domain to whole antibodies or by generating genetic fusions to antibody fragments/targeting domains able to direct the chimeric toxin against a desired sub-population of cancer cells. The high enzymatic activity, stability and resistance to conjugation procedures and especially the possibility to express recombinant fusions in yeast, make Saporin a well-suited tool for anti-cancer therapy approaches. Previous clinical work on RIPs-based Immunotoxins (including Saporin) has shown that several critical issues must be taken into deeper consideration to fully exploit their therapeutic potential. This review focuses on possible combinatorial strategies (chemical and genetic) to augment Saporin-targeted toxin efficacy. Combinatorial approaches may facilitate RIP escape into the cytosolic compartment (where target ribosomes are), while genetic manipulations may minimize potential adverse effects such as vascular-leak syndrome or may identify T/B cell epitopes in order to decrease the immunogenicity following similar strategies as those used in the case of bacterial toxins such as Pseudomonas Exotoxin A or as for Type I RIP Bouganin. This review will further focus on strategies to improve recombinant production of Saporin-based chimeric toxins.


Assuntos
Imunotoxinas , Saporinas , Animais , Terapia Genética , Humanos , Imunotoxinas/química , Imunotoxinas/genética , Imunotoxinas/uso terapêutico , Fototerapia , Pinocitose , Saporinas/química , Saporinas/genética , Saporinas/uso terapêutico
14.
J Biomed Mater Res A ; 106(6): 1585-1594, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29424473

RESUMO

Novel two-dimensional films and three-dimensional (3D) scaffolds based on chitosan (CHI), apatite (Ap), and graphene oxide (GO) were developed by an in situ synthesis in which self-assembly process was conducted to direct partial reduction of GO by CHI in acidic medium. Physical-chemical characterization was carried out by optical microscopy, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. In vitro biological studies using murine fibroblast (MC3T3) and human neuroblastoma (SH-SY5Y) cell lines were also performed. Cell growth and adherence on composites was also checked using SEM. Live and death staining by confocal microscope and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium of the samples were investigated. The results confirmed the incorporation of both Ap and GO sheets, into CHI polymeric matrix. Furthermore, it was confirmed a physical integration between inorganic Ap and organic CHI and strong chemical interaction between CHI and GO in the obtained composites. SH-SY5Y cell line showed preferential adherence on CHI/GO films surface while MC3T3 cell line displayed a good compatibility for all 3D scaffolds. This study confirms the biocompatibility of materials based on CHI, Ap, and GO for future tissues applications. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1585-1594, 2018.


Assuntos
Apatitas/química , Materiais Biocompatíveis/química , Quitosana/análogos & derivados , Grafite/química , Alicerces Teciduais/química , Animais , Adesão Celular , Linhagem Celular , Proliferação de Células , Humanos , Camundongos , Engenharia Tecidual
15.
J Cell Physiol ; 233(5): 4091-4105, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28941284

RESUMO

Targeted anticancer therapies demand discovery of new cellular targets to be exploited for the delivery of toxic molecules and drugs. In this perspective, in the last few years, nucleolin has been identified as an interesting surface marker to be used for the therapy of glioblastoma. In this study, we investigated whether a synthetic antagonist of cell-surface nucleolin known as N6L, previously reported to decrease both tumor growth and tumor angiogenesis in several cancer cell lines, including glioblastoma cells, as well as endothelial cells proliferation, could be exploited to deliver a protein toxin (saporin) to glioblastoma cells. The pseudopeptide N6L cross-linked to saporin-S6 induced internalization of the toxin inside glioblastoma cancer cells. Our results in vitro demonstrated the effectiveness of this conjugate in inducing cell death, with an ID50 four orders of magnitude lower than that observed for free N6L. Furthermore, the preliminary in vivo study demonstrated efficiency in reducing the tumor mass in an orthotopic mouse model of glioblastoma.


Assuntos
Glioblastoma/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Peptídeos/farmacologia , Fosfoproteínas/farmacologia , Proteínas de Ligação a RNA/farmacologia , Animais , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Terapia de Alvo Molecular , Neovascularização Patológica/patologia , Peptídeos/química , Fosfoproteínas/química , Proteínas de Ligação a RNA/química , Saporinas/química , Saporinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Nucleolina
16.
Oncotarget ; 8(56): 95412-95424, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29221137

RESUMO

Melanoma is the most biologically aggressive skin cancer of well established constitutive and induced resistance to pharmacological treatment. Despite the recent progresses in immunotherapies, many advanced metastatic melanoma patients still face a significant mortality risk. The aggressive nature of this disease sustains an urgent need for more successful, effective drugs. HER-3 - one of the four member of the tyrosin kinase epidermal growth factor receptors (EGFRs) family- is frequently overexpressed in solid tumors, including melanoma. Moreover, up-regulation of HER-3 and its ligand NRGß-1 are associated with poor prognosis, thus suggesting this receptor as a suitable target for cancer therapy. Several monoclonal antibodies targeting HER-3 are currently available, but preliminary results from clinical testing of these agents reveal a modest efficacy. Thus, a substantial improvement over this immunotherapeutic approach could be offered by an anti-HER-3 based Antibody-Drug Conjugate (ADC). In the present paper, we describe the generation of an ADC obtained by coupling the HER-3 targeting antibody EV20 linked to the plant toxin Saporin (Sap). In vitro, this ADC displays a powerful, specific and target-dependent cytotoxic activity which correlates with the degree of expression and internalization of HER-3 on tumor cells. Furthermore, in a murine melanoma model, EV20-Sap treatment leads to a significant reduction of the number of pulmonary metastasis.

17.
J Tissue Eng Regen Med ; 11(9): 2462-2470, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-29737636

RESUMO

The use of nanoscale materials in the design of scaffolds for CNS tissue is increasing, due to their ability to promote cell adhesion, to mimic an extracellular matrix microenvironment and to interact with neuronal membranes. In this framework, one of the major challenges when using undifferentiated neural cells is how to control the differentiation process. Here we report the characterization of a scaffold based on the self-assembled nanotubes of a mutant of the protein peroxiredoxin (from Schistosoma mansoni or Bos taurus), which allows the growth and differentiation of a model neuronal cell line (SHSY5Y). The results obtained demonstrate that SHSY5Y cells grow without any sign of toxicity and develop a neuronal phenotype, as shown by the expression of neuronal differentiation markers, without the use of any differentiation supplement, even in the presence of serum. The prodifferentiation effect is demonstrated to be dependent on the formation of the protein nanotube, since a wild-type (WT) form of the peroxiredoxin from Schistosoma mansoni does not induce any differentiation. The protein scaffold was also able to induce the spread of glioblastoma cancer stem cells growing in neurospheres and allowing the acquisition of a neuron-like morphology, as well as of immature rat cortical neurons. This protein used here as coating agent may be suggested for the development of scaffolds for tissue regeneration or anti-tumour devices. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Diferenciação Celular , Células-Tronco Neoplásicas/patologia , Neurônios/citologia , Peroxirredoxinas/química , Animais , Bovinos , Contagem de Células , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Células-Tronco Neoplásicas/ultraestrutura , Neuroblastoma/patologia , Neuroblastoma/ultraestrutura , Peroxirredoxinas/ultraestrutura , Ratos Sprague-Dawley , Schistosoma mansoni/metabolismo , Esferoides Celulares/patologia
18.
Microb Cell Fact ; 15(1): 194, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27842546

RESUMO

BACKGROUND: The big challenge in any anti-tumor therapeutic approach is represented by the development of drugs selectively acting on the target with limited side effects, that exploit the unique characteristics of malignant cells. The urokinase (urokinase-type plasminogen activator, uPA) and its receptor uPAR have been identified as preferential target candidates since they play a key role in the evolution of neoplasms and are associated with neoplasm aggressiveness and poor clinical outcome in several different tumor types. RESULTS: To selectively target uPAR over-expressing cancer cells, we prepared a set of chimeric proteins (ATF-SAP) formed by the human amino terminal fragments (ATF) of uPA and the plant ribosome inactivating protein saporin (SAP). Codon-usage optimization was used to increase the expression levels of the chimera in the methylotrophic yeast Pichia pastoris. We then moved the bioprocess to bioreactors and demonstrated that the fed-batch production of the recombinant protein can be successfully achieved, obtaining homogeneous discrete batches of the desired constructs. We also determined the cytotoxic activity of the obtained batch of ATF-SAP which was specifically cytotoxic for U937 leukemia cells, while another construct containing a catalytically inactive mutant form of SAP showed no activity. CONCLUSION: Our results demonstrate that the uPAR-targeted, saporin-based recombinant fusion ATF-SAP can be produced in a fed-batch fermentation with full retention of the molecules selective cytotoxicity and hence therapeutic potential.


Assuntos
Proteínas Recombinantes de Fusão/biossíntese , Proteínas Inativadoras de Ribossomos Tipo 1/biossíntese , Ativador de Plasminogênio Tipo Uroquinase/biossíntese , Reatores Biológicos , Ensaios de Seleção de Medicamentos Antitumorais , Fermentação , Humanos , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Inativadoras de Ribossomos Tipo 1/genética , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Saporinas , Células U937 , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/farmacologia
19.
Pharmaceuticals (Basel) ; 9(4)2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27690059

RESUMO

Lactoferrin is an iron-binding protein present in large quantities in colostrum and in breast milk, in external secretions and in polymorphonuclear leukocytes. Lactoferrin's main function is non-immune protection. Among several protective activities shown by lactoferrin, those displayed by orally administered lactoferrin are: (i) antimicrobial activity, which has been presumed due to iron deprivation, but more recently attributed also to a specific interaction with the bacterial cell wall and extended to viruses and parasites; (ii) immunomodulatory activity, with a direct effect on the development of the immune system in the newborn, together with a specific antinflammatory effects; (iii) a more recently discovered anticancer activity. It is worth noting that most of the protective activities of lactoferrin have been found, sometimes to a greater extent, also in peptides derived from limited proteolysis of lactoferrin that could be generated after lactoferrin ingestion. Lactoferrin could therefore be considered an ideal nutraceutic product because of its relatively cheap production from bovine milk and of its widely recognized tolerance after ingestion, along with its well demonstrated protective activities. The most important protective activities shown by orally administered bovine lactoferrin are reviewed in this article.

20.
Nanoscale ; 8(12): 6739-53, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26952635

RESUMO

Graphene oxide (GO) is rapidly emerging worldwide as a breakthrough precursor material for next-generation devices. However, this requires the transition of its two-dimensional layered structure into more accessible three-dimensional (3D) arrays. Peroxiredoxins (Prx) are a family of multitasking redox enzymes, self-assembling into ring-like architectures. Taking advantage of both their symmetric structure and function, 3D reduced GO-based composites are hereby built up. Results reveal that the "double-faced" Prx rings can adhere flat on single GO layers and partially reduce them by their sulfur-containing amino acids, driving their stacking into 3D multi-layer reduced GO-Prx composites. This process occurs in aqueous solution at a very low GO concentration, i.e. 0.2 mg ml(-1). Further, protein engineering allows the Prx ring to be enriched with metal binding sites inside its lumen. This feature is exploited to both capture presynthesized gold nanoparticles and grow in situ palladium nanoparticles paving the way to straightforward and "green" routes to 3D reduced GO-metal composite materials.


Assuntos
Grafite/química , Nanopartículas Metálicas/química , Óxidos/química , Engenharia de Proteínas/métodos , Adsorção , Aminoácidos/química , Animais , Cisteína/química , Ouro/química , Concentração de Íons de Hidrogênio , Íons , Metionina/química , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão e Varredura , Microscopia Eletrônica de Transmissão , Oxirredução , Paládio/química , Peroxirredoxinas/química , Schistosoma mansoni , Espectrofotometria Ultravioleta , Enxofre/química , Temperatura , Tioglicolatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA