Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mutat Res ; 672(2): 103-12, 2009 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-19028600

RESUMO

In this study we have investigated the genotoxic and cytotoxic effects of eluates derived from different types of commercially available dental cements, including glass ionomer cements (GICs) (Ketac Cem/3M ESPE and GC Fuji I/GC Corp), resin-modified glass ionomer cements (RM-GICs) (RelyX Luting/3M ESPE and Vitrebond/3M ESPE) and dual-cure resin cements (RCs) (Variolink II/ Ivoclar-Vivadent and Panavia F 2.0/Kuraray) on normal cultured human lymphocytes. Lymphocyte primary cultures obtained from blood samples of three healthy donors were exposed to serial dilutions of eluates derived from specimens of each material tested. Metaphases were induced with phytohaemagglutinin, collected after 72h treatment by use of colchicine and stained according to the fluorescence plus giemsa (FPG) procedure. Preparations were scored for sister chromatid exchange (SCE) and chromosomal aberrations (CAs), while the proliferation rate index (PRI) was also calculated. Our results show that eluates derived from the RM-GICs and RCs caused severe genotoxic effects by significantly increasing the frequencies of SCEs and CAs in cultures of peripheral blood lymphocytes and by decreasing the relevant PRI values in a dose-dependent manner, whereas the two GICs caused only minor cytogenetic effects. Eluates of the two RM-GICs (Vitrebond and RelyX) were also very cytotoxic, as the first serial dilutions of both materials caused a complete mitotic arrest in lymphocyte cultures. Overall, the degree of genotoxicity and cytotoxicity caused by dental cements decreased as follows: Viterbond>Rely X>Panavia F 2.0>Variolink II>Ketac Cem=GC Fuji I. These results indicate that different types of dental cement differ extensively in their genotoxic and cytotoxic potential and their ability to affect chromosomal integrity, cell-cycle progression, DNA replication and repair. Although these results cannot be directly extrapolated to the clinical situation, the potential occurrence of adverse effects caused by the RM-GICs and RCs tested in this study should be considered when making a clinical decision about dental cements.


Assuntos
Cimentos Dentários/toxicidade , Linfócitos/efeitos dos fármacos , Células Cultivadas , Aberrações Cromossômicas/efeitos dos fármacos , Cimentos Dentários/química , Humanos , Linfócitos/metabolismo , Cimentos de Resina/toxicidade , Troca de Cromátide Irmã/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA