Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Open Biol ; 14(7): 240089, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38981514

RESUMO

Rheumatoid arthritis is a chronic inflammatory disease that shows characteristic diurnal variation in symptom severity, where joint resident fibroblast-like synoviocytes (FLS) act as important mediators of arthritis pathology. We investigate the role of FLS circadian clock function in directing rhythmic joint inflammation in a murine model of inflammatory arthritis. We demonstrate FLS time-of-day-dependent gene expression is attenuated in arthritic joints, except for a subset of disease-modifying genes. The deletion of essential clock gene Bmal1 in FLS reduced susceptibility to collagen-induced arthritis but did not impact symptomatic severity in affected mice. Notably, FLS Bmal1 deletion resulted in loss of diurnal expression of disease-modulating genes across the joint, and elevated production of MMP3, a prognostic marker of joint damage in inflammatory arthritis. This work identifies the FLS circadian clock as an influential driver of daily oscillations in joint inflammation, and a potential regulator of destructive pathology in chronic inflammatory arthritis.


Assuntos
Fatores de Transcrição ARNTL , Artrite Experimental , Ritmo Circadiano , Fibroblastos , Sinoviócitos , Animais , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Camundongos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Artrite Experimental/patologia , Artrite Experimental/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Relógios Circadianos/genética , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Camundongos Knockout , Modelos Animais de Doenças , Regulação da Expressão Gênica , Masculino
2.
J Biol Rhythms ; 38(1): 34-43, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36377205

RESUMO

Immune-mediated inflammatory diseases (IMIDs) such as rheumatoid arthritis, inflammatory bowel disease, and asthma share common pathophysiological pathways characterized by chronic inflammation and subsequent tissue damage involving multiple body sites. Circadian rhythms are 24-h body cycles that regulate immune activity and control the magnitude of immune response based on time of day. Chronotype is a person's individual circadian phase preference, ranging from morningness to eveningness, which is known to influence the risk of cardiometabolic and mental health disease. We systematically reviewed the literature to assess the association of questionnaire-based chronotype and patients with IMID. A comprehensive search of MEDLINE and Embase identified 12 studies meeting the inclusion criteria, conducted in 7 countries and covering 4 IMIDs to include 15,625 IMID patients and 410,783 healthy controls. Results showed that later chronotype may be a risk factor for worse quality of life and increased symptom burden in patients with IMIDs. In addition, chronotype may be a risk factor for IMID incidence, but the direction and magnitude of this effect were not consistent across individual IMIDs. Chronotype assessment could contribute to risk stratification in patients with IMIDs. Cross-disciplinary collaboration to understand the role of circadian rhythms and chronotype in driving common inflammatory pathways could help to improve outcomes for patients with IMIDs.


Assuntos
Cronotipo , Ritmo Circadiano , Humanos , Ritmo Circadiano/fisiologia , Qualidade de Vida , Agentes de Imunomodulação , Inflamação , Sono/fisiologia , Inquéritos e Questionários
3.
Sci Immunol ; 7(75): eabk2541, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36054336

RESUMO

Interactions between the mammalian host and commensal microbiota are enforced through a range of immune responses that confer metabolic benefits and promote tissue health and homeostasis. Immunoglobulin A (IgA) responses directly determine the composition of commensal species that colonize the intestinal tract but require substantial metabolic resources to fuel antibody production by tissue-resident plasma cells. Here, we demonstrate that IgA responses are subject to diurnal regulation over the course of a circadian day. Specifically, the magnitude of IgA secretion, as well as the transcriptome of intestinal IgA+ plasma cells, was found to exhibit rhythmicity. Oscillatory IgA responses were found to be entrained by time of feeding and were also found to be in part coordinated by the plasma cell-intrinsic circadian clock via deletion of the master clock gene Arntl. Moreover, reciprocal interactions between the host and microbiota dictated oscillatory dynamics among the commensal microbial community and its associated transcriptional and metabolic activity in an IgA-dependent manner. Together, our findings suggest that circadian networks comprising intestinal IgA, diet, and the microbiota converge to align circadian biology in the intestinal tract and to ensure host-microbial mutualism.


Assuntos
Microbiota , Simbiose , Animais , Imunoglobulina A Secretora , Intestinos , Mamíferos , Periodicidade
4.
Proc Natl Acad Sci U S A ; 119(18): e2112781119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35482925

RESUMO

Chronic inflammation underpins many human diseases. Morbidity and mortality associated with chronic inflammation are often mediated through metabolic dysfunction. Inflammatory and metabolic processes vary through circadian time, suggesting an important temporal crosstalk between these systems. Using an established mouse model of rheumatoid arthritis, we show that chronic inflammatory arthritis results in rhythmic joint inflammation and drives major changes in muscle and liver energy metabolism and rhythmic gene expression. Transcriptional and phosphoproteomic analyses revealed alterations in lipid metabolism and mitochondrial function associated with increased EGFR-JAK-STAT3 signaling. Metabolomic analyses confirmed rhythmic metabolic rewiring with impaired ß-oxidation and lipid handling and revealed a pronounced shunt toward sphingolipid and ceramide accumulation. The arthritis-related production of ceramides was most pronounced during the day, which is the time of peak inflammation and increased reliance on fatty acid oxidation. Thus, our data demonstrate that localized joint inflammation drives a time-of-day­dependent build-up of bioactive lipid species driven by rhythmic inflammation and altered EGFR-STAT signaling.


Assuntos
Artrite , Relógios Circadianos , Ritmo Circadiano/fisiologia , Metabolismo Energético , Humanos , Inflamação/metabolismo
5.
Semin Immunopathol ; 44(2): 209-224, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35233691

RESUMO

The adaptive arm of the immune system facilitates recognition of specific foreign pathogens and, via the action of T and B lymphocytes, induces a fine-tuned response to target the pathogen and develop immunological memory. The functionality of the adaptive immune system exhibits daily 24-h variation both in homeostatic processes (such as lymphocyte trafficking and development of T lymphocyte subsets) and in responses to challenge. Here, we discuss how the circadian clock exerts influence over the function of the adaptive immune system, considering the roles of cell intrinsic clockwork machinery and cell extrinsic rhythmic signals. Inappropriate or misguided actions of the adaptive immune system can lead to development of autoimmune diseases such as rheumatoid arthritis, ulcerative colitis and multiple sclerosis. Growing evidence indicates that disturbance of the circadian clock has negative impact on development and progression of these chronic inflammatory diseases and we examine current understanding of clock-immune interactions in the setting of these inflammatory conditions. A greater appreciation of circadian control of adaptive immunity will facilitate further understanding of mechanisms driving daily variation in disease states and drive improvements in the diagnosis and treatment of chronic inflammatory diseases.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Imunidade Adaptativa , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Humanos , Inflamação , Subpopulações de Linfócitos T
6.
Parasite Immunol ; 44(3): e12906, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35092020

RESUMO

The special edition of Parasite Immunology 'Parasites-The importance of time' embraces the intersection between three established research disciplines-parasitology, immunology, and circadian biology. Each of these research areas has a longstanding history littered with landmark discoveries with the intersect between the three bringing exciting findings and new questions and perhaps even a greater sense of awe in terms of how parasites have evolved to interact and live with their hosts.


Assuntos
Parasitos , Animais , Interações Hospedeiro-Parasita
7.
Parasite Immunol ; 44(3): e12904, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34971451

RESUMO

The mammalian immune system adheres to a 24 h circadian schedule, exhibiting daily rhythmic patterns in homeostatic immune processes, such as immune cell trafficking, as well as the inflammatory response to infection. These diurnal rhythms are driven by endogenous molecular clocks within immune cells which are hierarchically coordinated by a light-entrained central clock in the suprachiasmatic nucleus of the hypothalamus and responsive to local rhythmic cues including temperature, hormones and feeding time. Circadian control of immunity may enable animals to anticipate daily pathogenic threat from parasites and gate the magnitude of the immune response, potentially enhancing fitness. However, parasites also strive for optimum fitness and some may have co-evolved to benefit from host circadian timing mechanisms, possibly via the parasites' own intrinsic molecular clocks. In this review, we summarize the current knowledge surrounding the influence of the circadian clock on the mammalian immune system and the host-parasitic interaction. We also discuss the potential for chronotherapeutic strategies in the treatment of parasitic diseases.


Assuntos
Relógios Circadianos , Parasitos , Doenças Parasitárias , Animais , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Interações Hospedeiro-Parasita , Mamíferos
8.
FASEB J ; 35(10): e21843, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34464475

RESUMO

Robust inflammatory responses are critical to survival following respiratory infection, with current attention focused on the clinical consequences of the Coronavirus pandemic. Epigenetic factors are increasingly recognized as important determinants of immune responses, and EZH2 is a prominent target due to the availability of highly specific and efficacious antagonists. However, very little is known about the role of EZH2 in the myeloid lineage. Here, we show EZH2 acts in macrophages to limit inflammatory responses to activation, and in neutrophils for chemotaxis. Selective genetic deletion in macrophages results in a remarkable gain in protection from infection with the prevalent lung pathogen, pneumococcus. In contrast, neutrophils lacking EZH2 showed impaired mobility in response to chemotactic signals, and resulted in increased susceptibility to pneumococcus. In summary, EZH2 shows complex, and divergent roles in different myeloid lineages, likely contributing to the earlier conflicting reports. Compounds targeting EZH2 are likely to impair mucosal immunity; however, they may prove useful for conditions driven by pulmonary neutrophil influx, such as adult respiratory distress syndrome.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Animais , Células Cultivadas , Macrófagos/citologia , Camundongos Endogâmicos C57BL , Neutrófilos/citologia
9.
Front Immunol ; 11: 1783, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922391

RESUMO

The gut microbiome plays a critical role in regulating host immunity and can no longer be regarded as a bystander in human health and disease. In recent years, circadian (24 h) oscillations have been identified in the composition of the microbiota, its biophysical localization within the intestinal tract and its metabolic outputs. The gut microbiome and its key metabolic outputs, such as short chain fatty acids and tryptophan metabolites contribute to maintenance of intestinal immunity by promoting barrier function, regulating the host mucosal immune system and maintaining the function of gut-associated immune cell populations. Loss of rhythmic host-microbiome interactions disrupts host immunity and increases risk of inflammation and metabolic complications. Here we review factors that drive circadian variation in the microbiome, including meal timing, dietary composition and host circadian clocks. We also consider how host-microbiome interactions impact the core molecular clock and its rhythmic outputs in addition to the potential impact of this relationship on circadian control of immunity.


Assuntos
Ritmo Circadiano/imunologia , Microbioma Gastrointestinal/fisiologia , Sistema Imunitário/imunologia , Sistema Imunitário/microbiologia , Humanos
10.
Eur Respir J ; 56(6)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32586876

RESUMO

BACKGROUND: The circadian clock powerfully regulates inflammation and the clock protein REV-ERBα is known to play a key role as a repressor of the inflammatory response. Asthma is an inflammatory disease of the airways with a strong time of day rhythm. Airway hyper-responsiveness (AHR) is a dominant feature of asthma; however, it is not known if this is under clock control. OBJECTIVES: To determine if allergy-mediated AHR is gated by the clock protein REV-ERBα. METHODS: After exposure to the intra-nasal house dust mite (HDM) allergen challenge model at either dawn or dusk, AHR to methacholine was measured invasively in mice. MAIN RESULTS: Wild-type (WT) mice show markedly different time of day AHR responses (maximal at dusk/start of the active phase), both in vivo and ex vivo, in precision cut lung slices. Time of day effects on AHR were abolished in mice lacking the clock gene Rev-erbα, indicating that such effects on asthma response are likely to be mediated via the circadian clock. We suggest that muscarinic receptors one (Chrm 1) and three (Chrm 3) may play a role in this pathway. CONCLUSIONS: We identify a novel circuit regulating a core process in asthma, potentially involving circadian control of muscarinic receptor expression, in a REV-ERBα dependent fashion. CLINICAL IMPLICATION: These insights suggest the importance of considering the timing of drug administration in clinic trials and in clinical practice (chronotherapy).


Assuntos
Asma , Relógios Circadianos , Animais , Ritmo Circadiano , Inflamação , Camundongos , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA