Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928252

RESUMO

Inclusion body myositis (IBM) is a slowly progressive disorder belonging to the idiopathic inflammatory myopathies, and it represents the most common adult-onset acquired myopathy. The main clinical features include proximal or distal muscular asymmetric weakness, with major involvement of long finger flexors and knee extensors. The main histological findings are the presence of fiber infiltrations, rimmed vacuoles, and amyloid inclusions. The etiopathogenesis is a challenge because both environmental and genetic factors are implicated in muscle degeneration and a distinction has been made previously between sporadic and hereditary forms. Here, we describe an Italian patient affected with a hereditary form of IBM with onset in his mid-forties. Next-generation sequencing analysis disclosed a heterozygous mutation c.76C>T (p.Pro26Ser) in the PDZ motif of the LDB3/ZASP gene, a mutation already described in a family with a late-onset myopathy and highly heterogenous degree of skeletal muscle weakness. In the proband's muscle biopsy, the expression of ZASP, myotilin, and desmin were increased. In our family, in addition to the earlier age of onset, the clinical picture is even more peculiar given the evidence, in one of the affected family members, of complete ophthalmoplegia in the vertical gaze. These findings help extend our knowledge of the clinical and genetic background associated with inclusion body myopathic disorders.


Assuntos
Proteínas com Domínio LIM , Miosite de Corpos de Inclusão , Linhagem , Humanos , Miosite de Corpos de Inclusão/genética , Miosite de Corpos de Inclusão/patologia , Masculino , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Mutação , Adulto
2.
Hum Mol Genet ; 32(24): 3374-3389, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37756622

RESUMO

Defective lysosomal acidification is responsible for a large range of multi-systemic disorders associated with impaired autophagy. Diseases caused by mutations in the VMA21 gene stand as exceptions, specifically affecting skeletal muscle (X-linked Myopathy with Excessive Autophagy, XMEA) or liver (Congenital Disorder of Glycosylation). VMA21 chaperones vacuolar (v-) ATPase assembly, which is ubiquitously required for proper lysosomal acidification. The reason VMA21 deficiencies affect specific, but divergent tissues remains unknown. Here, we show that VMA21 encodes a yet-unreported long protein isoform, in addition to the previously described short isoform, which we name VMA21-120 and VMA21-101, respectively. In contrast to the ubiquitous pattern of VMA21-101, VMA21-120 was predominantly expressed in skeletal muscle, and rapidly up-regulated upon differentiation of mouse and human muscle precursors. Accordingly, VMA21-120 accumulated during development, regeneration and denervation of mouse skeletal muscle. In contrast, neither induction nor blockade of autophagy, in vitro and in vivo, strongly affected VMA21 isoform expression. Interestingly, VMA21-101 and VMA21-120 both localized to the sarcoplasmic reticulum of muscle cells, and interacted with the v-ATPase. While VMA21 deficiency impairs autophagy, VMA21-101 or VMA21-120 overexpression had limited impact on autophagic flux in muscle cells. Importantly, XMEA-associated mutations lead to both VMA21-101 deficiency and loss of VMA21-120 expression. These results provide important insights into the clinical diversity of VMA21-related diseases and uncover a muscle-specific VMA21 isoform that potently contributes to XMEA pathogenesis.


Assuntos
Doenças Musculares , ATPases Vacuolares Próton-Translocadoras , Humanos , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Doenças Musculares/genética , Doenças Musculares/patologia , Músculo Esquelético/metabolismo , Genes Ligados ao Cromossomo X , Autofagia/genética
3.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176163

RESUMO

A number of muscular disorders are hallmarked by the aggregation of misfolded proteins within muscle fibers. A specialized form of macroautophagy, termed aggrephagy, is designated to remove and degrade protein aggregates. This review aims to summarize what has been studied so far about the direct involvement of aggrephagy and the activation of the key players, among others, p62, NBR1, Alfy, Tollip, Optineurin, TAX1BP1 and CCT2 in muscular diseases. In the first part of the review, we describe the aggrephagy pathway with the involved proteins; then, we illustrate the muscular disorder histologically characterized by protein aggregates, highlighting the role of aggrephagy pathway abnormalities in these muscular disorders.


Assuntos
Macroautofagia , Doenças Musculares , Humanos , Agregados Proteicos , Autofagia , Proteínas Reguladoras de Apoptose
5.
Acta Myol ; 42(1): 2-13, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091525

RESUMO

The valosin-containing protein (VCP), a widely expressed protein, controls the ubiquitin-proteasome system, endolysosomal sorting, and autophagy to maintain cellular proteostasis. Frontotemporal dementia (FTD), inclusion body myopathy, and Paget's disease of the bone (PDB) are all caused by dominant missense mutations in the VCP gene, which interfere with these mechanisms and cause a multisystem proteinopathy. We describe phenotypic and genetic findings of five patients with four different mutations in VCP gene (NM_007126): c.278G > A (p.R93H), c.463C > T (p.R155C), c.410C > T (p.P137L), c.464G > A (p.R155H), c.410C > T (p.P137L). We analysed the patient' biopsies, all characterized by a muscular phenotype, and we executed immunofluorescence staining to evaluate the presence of proteins: p62, VCP, desmin, myotilin, TDP-43. Eventually we performed a brief literature review to compare our cases with those already reported. Our report strongly suggest that VCP gene mutations can be related with a predominant skeletal muscle phenotype without any central nervous system involvement, as occasionally reported in the literature. Particularly, our patient with R93H shows only myopathic involvement while this mutation has been described once associated only to Hereditary Spastic Paraplegia. Further study will be necessary to understand such a broad and different clinical spectrum.


Assuntos
Demência Frontotemporal , Doenças Musculares , Humanos , Proteína com Valosina/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Doenças Musculares/diagnóstico , Doenças Musculares/genética , Doenças Musculares/metabolismo , Demência Frontotemporal/diagnóstico , Demência Frontotemporal/genética , Músculo Esquelético/patologia , Mutação
6.
J Neuromuscul Dis ; 10(3): 449-458, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37005892

RESUMO

Congenital myasthenic syndromes (CMS) are rare diseases caused by mutation in genes coding for proteins involved in neuromuscular junction structure and function. DPAGT1 gene mutations are a rare cause of CMS whose clinical evolution and pathophysiological mechanisms have not been clarified completely. We present the case of two twins displaying an infancy-onset predominant limb-girdle phenotype and carrying a novel DPAGT1 mutation associated with unusual histological and clinical findings. CMS can mimic paediatric and adult limb-girdle phenotype, hence neurophysiology plays a fundamental role in the differential diagnosis.


Assuntos
Síndromes Miastênicas Congênitas , Humanos , Síndromes Miastênicas Congênitas/diagnóstico , Síndromes Miastênicas Congênitas/genética , Junção Neuromuscular , Mutação , Fenótipo
7.
Neurol Sci ; 42(12): 5359-5363, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34378097

RESUMO

INTRODUCTION: Mutations of the skeletal muscle sodium channel gene SCN4A are associated with several neuromuscular disorders including hyper/hypokaliemic periodic paralysis, paramyotonia congenita and sodium channel myotonia. These disorders are distinguished from dystrophic myotonias by the absence of progressive weakness and extramuscular systemic involvement. METHODS: We present an Italian family with 2 subjects carrying a p.Asn1180Ile mutation in SCN4A gene showing a peculiar clinical picture characterized by the association of myopathic features and myotonia. RESULTS: The clinical, electromyographic and histological findings of these patients are reported. The possible pathogenicity of the mutation was tested by three different software, all giving positive results. DISCUSSION: This is the first report of a dominant, heterozygous mutation in SCN4A causing a complex phenotype of non-congenital myopathy and myotonic syndrome. We suggest that, in patients with myotonia and myopathy not related to dystrophic myotonias, the sequence analysis of SCN4A gene should be performed.


Assuntos
Doenças Musculares , Miotonia Congênita , Miotonia , Transtornos Miotônicos , Humanos , Mutação/genética , Miotonia/genética , Miotonia Congênita/genética , Transtornos Miotônicos/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Linhagem
8.
Front Cell Dev Biol ; 9: 635063, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718371

RESUMO

Tubular Aggregate Myopathy (TAM) is a hereditary ultra-rare muscle disorder characterized by muscle weakness and cramps or myasthenic features. Biopsies from TAM patients show the presence of tubular aggregates originated from sarcoplasmic reticulum due to altered Ca2+ homeostasis. TAM is caused by gain-of-function mutations in STIM1 or ORAI1, proteins responsible for Store-Operated-Calcium-Entry (SOCE), a pivotal mechanism in Ca2+ signaling. So far there is no cure for TAM and the mechanisms through which STIM1 or ORAI1 gene mutation lead to muscle dysfunction remain to be clarified. It has been established that post-natal myogenesis critically relies on Ca2+ influx through SOCE. To explore how Ca2+ homeostasis dysregulation associated with TAM impacts on muscle differentiation cascade, we here performed a functional characterization of myoblasts and myotubes deriving from patients carrying STIM1 L96V mutation by using fura-2 cytofluorimetry, high content imaging and real-time PCR. We demonstrated a higher resting Ca2+ concentration and an increased SOCE in STIM1 mutant compared with control, together with a compensatory down-regulation of genes involved in Ca2+ handling (RyR1, Atp2a1, Trpc1). Differentiating STIM1 L96V myoblasts persisted in a mononuclear state and the fewer multinucleated myotubes had distinct morphology and geometry of mitochondrial network compared to controls, indicating a defect in the late differentiation phase. The alteration in myogenic pathway was confirmed by gene expression analysis regarding early (Myf5, Mef2D) and late (DMD, Tnnt3) differentiation markers together with mitochondrial markers (IDH3A, OGDH). We provided evidences of mechanisms responsible for a defective myogenesis associated to TAM mutant and validated a reliable cellular model usefull for TAM preclinical studies.

10.
Front Genet ; 11: 131, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194622

RESUMO

Dystrophinopathies are inherited diseases caused by mutations in the dystrophin (DMD) gene for which testing is mandatory for genetic diagnosis, reproductive choices and eligibility for personalized trials. We genotyped the DMD gene in our Italian cohort of 1902 patients (BMD n = 740, 39%; DMD n =1162, 61%) within a nationwide study involving 11 diagnostic centers in a 10-year window (2008-2017). In DMD patients, we found deletions in 57%, duplications in 11% and small mutations in 32%. In BMD, we found deletions in 78%, duplications in 9% and small mutations in 13%. In BMD, there are a higher number of deletions, and small mutations are more frequent than duplications. Among small mutations that are generally frequent in both phenotypes, 44% of DMD and 36% of BMD are nonsense, thus, eligible for stop codon read-through therapy; 63% of all out-of-frame deletions are eligible for single exon skipping. Patients were also assigned to Italian regions and showed interesting regional differences in mutation distribution. The full genetic characterization in this large, nationwide cohort has allowed us to draw several correlations between DMD/BMD genotype landscapes and mutation frequency, mutation types, mutation locations along the gene, exon/intron architecture, and relevant protein domain, with effects on population genetic characteristics and new personalized therapies.

11.
J Neuromuscul Dis ; 7(2): 153-166, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32039858

RESUMO

BACKGROUND: Extensive genetic screening results in the identification of thousands of rare variants that are difficult to interpret. Because of its sheer size, rare variants in the titin gene (TTN) are detected frequently in any individual. Unambiguous interpretation of molecular findings is almost impossible in many patients with myopathies or cardiomyopathies. OBJECTIVE: To refine the current classification framework for TTN-associated skeletal muscle disorders and standardize the interpretation of TTN variants. METHODS: We used the guidelines issued by the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) to re-analyze TTN genetic findings from our patient cohort. RESULTS: We identified in the classification guidelines three rules that are not applicable to titin-related skeletal muscle disorders; six rules that require disease-/gene-specific adjustments and four rules requiring quantitative thresholds for a proper use. In three cases, the rule strength need to be modified. CONCLUSIONS: We suggest adjustments are made to the guidelines. We provide frequency thresholds to facilitate filtering of candidate causative variants and guidance for the use and interpretation of functional data and co-segregation evidence. We expect that the variant classification framework for TTN-related skeletal muscle disorders will be further improved along with a better understanding of these diseases.


Assuntos
Cardiomiopatias , Conectina/genética , Doenças Musculares , Guias de Prática Clínica como Assunto/normas , Cardiomiopatias/classificação , Cardiomiopatias/congênito , Cardiomiopatias/genética , Humanos , Doenças Musculares/classificação , Doenças Musculares/congênito , Doenças Musculares/genética
12.
Neuromuscul Disord ; 29(5): 376-380, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31040037

RESUMO

LAMA2 mutations cause the most frequent congenital muscular dystrophy subtype MDC1A and a variety of milder phenotypes, characterized by total or partial laminin-α2 deficiency. In both severe and milder cases brain MRI invariably shows abnormal white matter signal intensity. We report clinical, histopathological, imaging and genetic data on two siblings with very subtle, and at first undetected, reduction in laminin-α2 expression, and brain MRI showing minor non-specific abnormalities. Clinical features in the female proband were characterized by muscle weakness involving neck and axial muscles, and pelvic girdle and distal lower limb muscles, reduced tendon reflexes and pes cavus. Clinical features in a younger brother were similar, and remained stable in both siblings during the follow up. Whole exome sequencing (WES) detected two heterozygous truncating LAMA2 mutations. Brain MRI in combination with laminin-α2 immunohistochemistry might not be sufficient and WES might be the only means to reach a diagnosis.


Assuntos
Encéfalo/diagnóstico por imagem , Laminina/genética , Distrofias Musculares/genética , Irmãos , Adolescente , Criança , Códon sem Sentido , Feminino , Heterozigoto , Humanos , Imuno-Histoquímica , Laminina/metabolismo , Imageamento por Ressonância Magnética , Masculino , Distrofias Musculares/diagnóstico , Distrofias Musculares/metabolismo , Distrofias Musculares/fisiopatologia , Sequenciamento do Exoma
13.
J Neurol Sci ; 398: 75-78, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30685713

RESUMO

Variants in Filamin C (FLNC) gene may cause either cardiomyopathies or different myopathies. We describe a family affected by a distal myopathy with autosomal dominant inheritance. The onset of the disease was in the third decade with gait impairment due to distal leg weakness. Subsequently, the disease progressed with an involvement of proximal lower limbs and hand muscles. Muscle biopsy, performed in one subject,identified relevant myofibrillar abnormalities. We performed a target gene panel testing for myofibrillar myopathies by NGS approach which identified a novel mutation in exon 3 of FLNC gene (c.A664G:p.M222V), within the N-terminal actin-binding (ABD) domain. This variant has been identified in all affected members of the family, thus supporting its pathogenic role. Differently from previously identified variants, our family showed a predominant leg involvement and myofibrillar aggregates, thus further expanding the spectrum of Filamin C related myopathies.


Assuntos
Actinas/genética , Miopatias Distais/genética , Filaminas/genética , Mutação/genética , Miopatias Congênitas Estruturais/genética , Actinas/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/fisiologia , Miopatias Distais/diagnóstico , Miopatias Distais/metabolismo , Filaminas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Miopatias Congênitas Estruturais/diagnóstico , Miopatias Congênitas Estruturais/metabolismo , Linhagem
15.
Matrix Biol ; 74: 77-100, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29981373

RESUMO

Exosomes, natural carriers of mRNAs, non-coding RNAs and proteins between donor and recipient cells, actively contribute to cell-cell communication. We investigated the potential pro-fibrotic role of exosomes released by muscle-derived fibroblasts of Duchenne muscular dystrophy (DMD) patients, and of miRNAs carried by exosomes. By fibrosis focused array analysis we found that exosomes from DMD fibroblasts, had significantly higher levels of miR-199a-5p, a miRNA up-regulated in fibrotic conditions, compared to control exosomes, while levels in myoblast-derived exosomes were not increased. In control fibroblasts, exposure to DMD fibroblast-derived exosomes induced a myofibroblastic phenotype with increase in α-smooth actin, collagen and fibronectin transcript and protein expression, soluble collagen production and deposition, cell proliferation, and activation of Akt and ERK signaling, while exposure to control exosomes did not. Transfecting control fibroblasts or loading control exosomes with miR-199a-5p mimic or inhibitor induced opposing effects on fibrosis-related mRNAs and proteins, on collagen production and Akt and ERK pathways. Finally, injection of DMD fibroblast-derived exosomes into mouse tibialis anterior muscle after cardiotoxin-induced necrosis, produced greater fibrosis than control exosomes. Our findings indicate that exosomes produced by local fibroblasts in the DMD muscle are able to induce phenotypic conversion of normal fibroblasts to myofibroblasts thereby increasing the fibrotic response. This conversion is related to transfer of high levels of miR-199a-5p and to reduction of its target caveolin-1; both, therefore, are potential therapeutic targets in muscle fibrosis.


Assuntos
Exossomos/genética , MicroRNAs/genética , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Regulação para Cima , Actinas/genética , Actinas/metabolismo , Animais , Cardiotoxinas/efeitos adversos , Comunicação Celular , Proliferação de Células , Colágeno/genética , Colágeno/metabolismo , Modelos Animais de Doenças , Exossomos/metabolismo , Fibroblastos/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Fibrose , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/induzido quimicamente , Distrofia Muscular de Duchenne/metabolismo
16.
Toxicol In Vitro ; 50: 124-136, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29522793

RESUMO

Botulin toxin (BTX) is widely used for treating skeletal muscle spasticity. Experimental reports on BTX treatment were mainly focused on the neuromuscular junction, while relatively little is known about toxin effects on the muscle cell itself. We investigated possible impact of BTX type A on skeletal muscle cell transcriptome by microarray analysis in muscle-derived cell cultures (fibroblasts, myoblasts and myotubes) from controls and spastic patients, and results were then validated at transcript and protein level. BTX-A treatment of control cells induced major changes in the myogenic component of the transcriptome, whereas the same treatment had a negligible effect in the fibrogenic component. BTX-A treatment of cell cultures from spastic patients induced an increased number of genes differentially expressed both in the fibrogenic and myogenic components. Specifically, BTX-A had a major effect on cell cycle-related genes in myoblasts, on muscle contraction-related genes in myotubes, and on extracellular matrix-related genes in fibroblasts from spastic patients. Our findings show that in vitro BTX-A treatment differentially affects transcript expression in muscle cells from spastic patients compared to those from controls suggesting a direct effect of BTX-A on muscle-specific functional pathways.


Assuntos
Toxinas Botulínicas Tipo A/toxicidade , Fibras Musculares Esqueléticas/efeitos dos fármacos , Espasticidade Muscular/genética , Fármacos Neuromusculares/toxicidade , Músculo Quadríceps/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Adolescente , Adulto , Biópsia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/metabolismo , Espasticidade Muscular/metabolismo , Espasticidade Muscular/patologia , Mioblastos Esqueléticos/efeitos dos fármacos , Mioblastos Esqueléticos/metabolismo , Músculo Quadríceps/metabolismo , Músculo Quadríceps/patologia , Adulto Jovem
17.
JAMA Neurol ; 75(5): 557-565, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29435569

RESUMO

Importance: Mutations in the titin gene (TTN) cause a wide spectrum of genetic diseases. The interpretation of the numerous rare variants identified in TTN is a difficult challenge given its large size. Objective: To identify genetic variants in titin in a cohort of patients with muscle disorders. Design, Setting, and Participants: In this case series, 9 patients with titinopathy and 4 other patients with possibly disease-causing variants in TTN were identified. Titin mutations were detected through targeted resequencing performed on DNA from 504 patients with muscular dystrophy, congenital myopathy, or other skeletal muscle disorders. Patients were enrolled from 10 clinical centers in April 2012 to December 2013. All of them had not received a diagnosis after undergoing an extensive investigation, including Sanger sequencing of candidate genes. The data analysis was performed between September 2013 and January 2017. Sequencing data were analyzed using an internal custom bioinformatics pipeline. Main Outcomes and Measures: The identification of novel mutations in the TTN gene and novel patients with titinopathy. We performed an evaluation of putative causative variants in the TTN gene, combining genetic, clinical, and imaging data with messenger RNA and/or protein studies. Results: Of the 9 novel patients with titinopathy, 5 (55.5%) were men and the mean (SD) age at onset was 25 (15.8) years (range, 0-46 years). Of the 4 other patients (3 men and 1 woman) with possibly disease-causing TTN variants, 2 (50%) had a congenital myopathy and 2 (50%) had a slowly progressive distal myopathy with onset in the second decade. Most of the identified mutations were previously unreported. However, all the variants, even the already described mutations, require careful clinical and molecular evaluation of probands and relatives. Heterozygous truncating variants or unique missense changes are not sufficient to make a diagnosis of titinopathy. Conclusions and Relevance: The interpretation of TTN variants often requires further analyses, including a comprehensive evaluation of the clinical phenotype (deep phenotyping) as well as messenger RNA and protein studies. We propose a specific workflow for the clinical interpretation of genetic findings in titin.


Assuntos
Conectina/genética , Conectina/metabolismo , Variação Genética/genética , Doenças Musculares/genética , Doenças Musculares/metabolismo , Adulto , Estudos de Coortes , Análise Mutacional de DNA , Europa (Continente) , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Doenças Musculares/diagnóstico por imagem , Adulto Jovem
18.
Neuromuscul Disord ; 27(5): 481-486, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28258942

RESUMO

Neutral lipid storage disease with myopathy (NLSDM) presents with skeletal muscle myopathy and severe dilated cardiomyopathy in nearly 40% of cases. NLSDM is caused by mutations in the PNPLA2 gene, which encodes the adipose triglyceride lipase (ATGL). Here we report clinical and genetic findings of a patient carrying two novel PNPLA2 mutations (c.696+4A>G and c.553_565delGTCCCCCTTCTCG). She presented at age 39 with right upper limb abduction weakness slowly progressing over the years with asymmetric involvement of proximal upper and lower limb muscles. Cardiological evaluation through ECG and heart echo scan was normal until the age 53, when mild left ventricular diastolic dysfunction was detected. Molecular analysis revealed that only one type of PNPLA2 transcript, with exon 5 skipping, was expressed in patient cells. Such aberrant mRNA causes the production of a shorter ATGL protein, lacking part of the catalytic domain. This is an intriguing case, displaying severe PNPLA2 mutations with clinical presentation characterized by slight cardiac impairment and full expression of severe asymmetric myopathy.


Assuntos
Cardiomiopatias/genética , Lipase/deficiência , Erros Inatos do Metabolismo Lipídico/genética , Doenças Musculares/genética , Mutação , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Feminino , Humanos , Lipase/genética , Erros Inatos do Metabolismo Lipídico/diagnóstico por imagem , Erros Inatos do Metabolismo Lipídico/patologia , Erros Inatos do Metabolismo Lipídico/fisiopatologia , Pessoa de Meia-Idade , Músculos/diagnóstico por imagem , Músculos/patologia , Doenças Musculares/diagnóstico por imagem , Doenças Musculares/patologia , Doenças Musculares/fisiopatologia
19.
Biochim Biophys Acta ; 1852(7): 1451-64, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25892183

RESUMO

Excessive extracellular matrix deposition progressively replacing muscle fibres is the endpoint of most severe muscle diseases. Recent data indicate major involvement of microRNAs in regulating pro- and anti-fibrotic genes. To investigate the roles of miR-21 and miR-29 in muscle fibrosis in Duchenne muscle dystrophy, we evaluated their expression in muscle biopsies from 14 patients, and in muscle-derived fibroblasts and myoblasts. In Duchenne muscle biopsies, miR-21 expression was significantly increased, and correlated directly with COL1A1 and COL6A1 transcript levels. MiR-21 expression was also significantly increased in Duchenne fibroblasts, more so after TGF-ß1 treatment. In Duchenne fibroblasts the expression of miR-21 target transcripts PTEN (phosphatase and tensin homolog deleted on chromosome 10) and SPRY-1 (Sprouty homolog 1) was significantly reduced; while collagen I and VI transcript levels and soluble collagen production were significantly increased. MiR-29a and miR-29c were significantly reduced in Duchenne muscle and myoblasts, and miR-29 target transcripts, COL3A1, FBN1 and YY1, significantly increased. MiR-21 silencing in mdx mice reduced fibrosis in the diaphragm muscle and in both Duchenne fibroblasts and mdx mice restored PTEN and SPRY-1 expression, and significantly reduced collagen I and VI expression; while miR-29 mimicking in Duchenne myoblasts significantly decreased miR-29 target transcripts. These findings indicate that miR-21 and miR-29 play opposing roles in Duchenne muscle fibrosis and suggest that pharmacological modulation of their expression has therapeutic potential for reducing fibrosis in this condition.


Assuntos
MicroRNAs/genética , Distrofia Muscular de Duchenne/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Estudos de Casos e Controles , Células Cultivadas , Criança , Pré-Escolar , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Fibrilina-1 , Fibrilinas , Fibroblastos/metabolismo , Fibrose/genética , Fibrose/metabolismo , Humanos , Lactente , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos mdx , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Mioblastos/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
20.
Biochem Biophys Res Commun ; 457(3): 262-6, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25576864

RESUMO

Mutations in the beta-myosin heavy chain gene (MYH7) cause different muscle disorders. The specific molecular pathobiological processes that cause these different phenotypes remains unexplained. We describe three members of a family with an autosomal dominant mutation in the distal rod of MYH7 [c.5401G> A (p.Glu1801Lys)] displaying a complex phenotype characterized by Laing Distal Myopathy like phenotype, left ventricular non compaction cardiomyopathy and Fiber Type Disproportion picture at muscle biopsy. We suggest that this overlapping presentation confirm the phenotypic variability of MYH7 myopathy and may be helpful to improve the genotype phenotype correlation.


Assuntos
Miosinas Cardíacas/genética , Miopatias Distais/genética , Miocárdio Ventricular não Compactado Isolado/genética , Proteínas Mutantes/genética , Mutação de Sentido Incorreto , Miopatias Congênitas Estruturais/genética , Cadeias Pesadas de Miosina/genética , Adulto , Idoso , Substituição de Aminoácidos , Sequência de Bases , DNA/genética , Análise Mutacional de DNA , Miopatias Distais/patologia , Feminino , Genes Dominantes , Estudos de Associação Genética , Humanos , Miocárdio Ventricular não Compactado Isolado/diagnóstico por imagem , Masculino , Miopatias Congênitas Estruturais/patologia , Linhagem , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA