Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Int J Mol Sci ; 21(19)2020 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-32993167

RESUMO

Kluyveromyces marxianus (K. marxianus) is an increasingly popular industrially relevant yeast. It is known to possess a highly efficient non-homologous end joining (NHEJ) pathway that promotes random integration of non-homologous DNA fragments into its genome. The nature of the integration events was traditionally analyzed by Southern blot hybridization. However, the precise DNA sequence at the insertion sites were not fully explored. We transformed a PCR product of the Saccharomyces cerevisiae URA3 gene (ScURA3) into an uracil auxotroph K. marxianus otherwise wildtype strain and picked 24 stable Ura+ transformants for sequencing analysis. We took advantage of rapid advances in DNA sequencing technologies and developed a method using a combination of Illumina MiSeq and Oxford Nanopore sequencing. This approach enables us to uncover the gross chromosomal rearrangements (GCRs) that are associated with the ScURA3 random integration. Moreover, it will shine a light on understanding DNA repair mechanisms in eukaryotes, which could potentially provide insights for cancer research.


Assuntos
Cromossomos Fúngicos , Kluyveromyces/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Aberrações Cromossômicas , Reparo do DNA por Junção de Extremidades , DNA Fúngico/genética , Sequenciamento por Nanoporos/métodos , Transformação Genética
2.
ACS Synth Biol ; 8(2): 239-244, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30645947

RESUMO

We previously discovered that intact bacterial chromosomes can be directly transferred to a yeast host cell where they can propagate as centromeric plasmids by fusing bacterial cells with S accharomyces cerevisiae spheroplasts. Inside the host any desired number of genetic changes can be introduced into the yeast centromeric plasmid to produce designer genomes that can be brought to life using a genome transplantation protocol. Earlier research demonstrated that the removal of restriction-systems from donor bacteria, such as Mycoplasma mycoides, Mycoplasma capricolum, or Haemophilus influenzae increased successful genome transfers. These findings suggested that other genetic factors might also impact the bacteria-to-yeast genome transfer process. In this study, we demonstrated that the removal of a particular genetic factor, the glycerol uptake facilitator protein gene glpF from M. mycoides, significantly increased direct genome transfer by up to 21-fold. Additionally, we showed that intact bacterial cells were endocytosed by yeast spheroplasts producing organelle-like structures within these yeast cells. These might lead to the possibility of creating novel synthetic organelles.


Assuntos
Genoma Bacteriano/genética , Mycoplasma mycoides/genética , Genoma Fúngico/genética , Glicerol/metabolismo , Haemophilus influenzae/genética , Mycoplasma capricolum/genética , Esferoplastos/citologia , Esferoplastos/metabolismo
3.
ACS Synth Biol ; 7(9): 2245-2255, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30107122

RESUMO

A new wave of interest in cell-free protein synthesis (CFPS) systems has shown their utility for producing proteins at high titers, establishing genetic regulatory element libraries ( e.g., promoters, ribosome binding sites) in nonmodel organisms, optimizing biosynthetic pathways before implementation in cells, and sensing biomarkers for diagnostic applications. Unfortunately, most previous efforts have focused on a select few model systems, such as Escherichia coli. Broadening the spectrum of organisms used for CFPS promises to better mimic host cell processes in prototyping applications and open up new areas of research. Here, we describe the development and characterization of a facile CFPS platform based on lysates derived from the fast-growing bacterium Vibrio natriegens, which is an emerging host organism for biotechnology. We demonstrate robust preparation of highly active extracts using sonication, without specialized and costly equipment. After optimizing the extract preparation procedure and cell-free reaction conditions, we show synthesis of 1.6 ± 0.05 g/L of superfolder green fluorescent protein in batch mode CFPS, making it competitive with existing E. coli CFPS platforms. To showcase the flexibility of the system, we demonstrate that it can be lyophilized and retain biosynthesis capability, that it is capable of producing antimicrobial peptides, and that our extract preparation procedure can be coupled with the recently described Vmax Express strain in a one-pot system. Finally, to further increase system productivity, we explore a knockout library in which putative negative effectors of CFPS are genetically removed from the source strain. Our V. natriegens-derived CFPS platform is versatile and simple to prepare and use. We expect it will facilitate expansion of CFPS systems into new laboratories and fields for compelling applications in synthetic biology.


Assuntos
Sistema Livre de Células , Vibrio/genética , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ribossomos/metabolismo , Biologia Sintética , Vibrio/metabolismo
4.
mSphere ; 2(5)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28989973

RESUMO

Genetic engineering of cytomegalovirus (CMV) currently relies on generating a bacterial artificial chromosome (BAC) by introducing a bacterial origin of replication into the viral genome using in vivo recombination in virally infected tissue culture cells. However, this process is inefficient, results in adaptive mutations, and involves deletion of viral genes to avoid oversized genomes when inserting the BAC cassette. Moreover, BAC technology does not permit the simultaneous manipulation of multiple genome loci and cannot be used to construct synthetic genomes. To overcome these limitations, we adapted synthetic biology tools to clone CMV genomes in Saccharomyces cerevisiae. Using an early passage of the human CMV isolate Toledo, we first applied transformation-associated recombination (TAR) to clone 16 overlapping fragments covering the entire Toledo genome in Saccharomyces cerevisiae. Then, we assembled these fragments by TAR in a stepwise process until the entire genome was reconstituted in yeast. Since next-generation sequence analysis revealed that the low-passage-number isolate represented a mixture of parental and fibroblast-adapted genomes, we selectively modified individual DNA fragments of fibroblast-adapted Toledo (Toledo-F) and again used TAR assembly to recreate parental Toledo (Toledo-P). Linear, full-length HCMV genomes were transfected into human fibroblasts to recover virus. Unlike Toledo-F, Toledo-P displayed characteristics of primary isolates, including broad cellular tropism in vitro and the ability to establish latency and reactivation in humanized mice. Our novel strategy thus enables de novo cloning of CMV genomes, more-efficient genome-wide engineering, and the generation of viral genomes that are partially or completely derived from synthetic DNA. IMPORTANCE The genomes of large DNA viruses, such as human cytomegalovirus (HCMV), are difficult to manipulate using current genetic tools, and at this time, it is not possible to obtain, molecular clones of CMV without extensive tissue culture. To overcome these limitations, we used synthetic biology tools to capture genomic fragments from viral DNA and assemble full-length genomes in yeast. Using an early passage of the HCMV isolate Toledo containing a mixture of wild-type and tissue culture-adapted virus. we directly cloned the majority sequence and recreated the minority sequence by simultaneous modification of multiple genomic regions. Thus, our novel approach provides a paradigm to not only efficiently engineer HCMV and other large DNA viruses on a genome-wide scale but also facilitates the cloning and genetic manipulation of primary isolates and provides a pathway to generating entirely synthetic genomes.

5.
Nat Biotechnol ; 35(7): 672-675, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28553942

RESUMO

Manufacturing processes for biological molecules in the research laboratory have failed to keep pace with the rapid advances in automization and parellelization. We report the development of a digital-to-biological converter for fully automated, versatile and demand-based production of functional biologics starting from DNA sequence information. Specifically, DNA templates, RNA molecules, proteins and viral particles were produced in an automated fashion from digitally transmitted DNA sequences without human intervention.


Assuntos
Produtos Biológicos/química , Biopolímeros/química , Engenharia Genética/instrumentação , Sequenciamento de Nucleotídeos em Larga Escala/instrumentação , Robótica/instrumentação , Biologia Sintética/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
6.
Nucleic Acids Res ; 45(11): 6971-6980, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28499033

RESUMO

The ability to rewrite large stretches of genomic DNA enables the creation of new organisms with customized functions. However, few methods currently exist for accumulating such widespread genomic changes in a single organism. In this study, we demonstrate a rapid approach for rewriting bacterial genomes with modified synthetic DNA. We recode 200 kb of the Salmonella typhimurium LT2 genome through a process we term SIRCAS (stepwise integration of rolling circle amplified segments), towards constructing an attenuated and genetically isolated bacterial chassis. The SIRCAS process involves direct iterative recombineering of 10-25 kb synthetic DNA constructs which are assembled in yeast and amplified by rolling circle amplification. Using SIRCAS, we create a Salmonella with 1557 synonymous leucine codon replacements across 176 genes, the largest number of cumulative recoding changes in a single bacterial strain to date. We demonstrate reproducibility over sixteen two-day cycles of integration and parallelization for hierarchical construction of a synthetic genome by conjugation. The resulting recoded strain grows at a similar rate to the wild-type strain and does not exhibit any major growth defects. This work is the first instance of synthetic bacterial recoding beyond the Escherichia coli genome, and reveals that Salmonella is remarkably amenable to genome-scale modification.


Assuntos
DNA Bacteriano/genética , Engenharia Genética/métodos , Salmonella typhimurium/genética , Códon , Genes Bacterianos , Genes Sintéticos , Genoma Bacteriano , Leucina/genética , Viabilidade Microbiana , Reprodutibilidade dos Testes
8.
Nat Methods ; 13(10): 849-51, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27571549

RESUMO

A rapidly growing bacterial host would be desirable for a range of routine applications in molecular biology and biotechnology. The bacterium Vibrio natriegens has the fastest growth rate of any known organism, with a reported doubling time of <10 min. We report the development of genetic tools and methods to engineer V. natriegens and demonstrate the advantages of using these engineered strains in common biotech processes.


Assuntos
Biotecnologia/métodos , Biologia Molecular/métodos , Organismos Geneticamente Modificados/crescimento & desenvolvimento , Vibrio/crescimento & desenvolvimento , Vibrio/genética , Proteínas de Bactérias/biossíntese , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Genes Bacterianos , Organismos Geneticamente Modificados/genética , Regiões Promotoras Genéticas
9.
Sci Rep ; 6: 30714, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27489041

RESUMO

Bacteria are indispensable for the study of fundamental molecular biology processes due to their relatively simple gene and genome architecture. The ability to engineer bacterial chromosomes is quintessential for understanding gene functions. Here we demonstrate the engineering of the small-ribosomal subunit (16S) RNA of Mycoplasma mycoides, by combining the CRISPR/Cas9 system and the yeast recombination machinery. We cloned the entire genome of M. mycoides in yeast and used constitutively expressed Cas9 together with in vitro transcribed guide-RNAs to introduce engineered 16S rRNA genes. By testing the function of the engineered 16S rRNA genes through genome transplantation, we observed surprising resilience of this gene to addition of genetic elements or helix substitutions with phylogenetically-distant bacteria. While this system could be further used to study the function of the 16S rRNA, one could envision the "simple" M. mycoides genome being used in this setting to study other genetic structures and functions to answer fundamental questions of life.


Assuntos
Engenharia Genética/métodos , Mycoplasma mycoides/genética , RNA Ribossômico 16S/genética , Sistemas CRISPR-Cas , Clonagem Molecular , Genoma Bacteriano , Filogenia , RNA Bacteriano/genética , Saccharomyces cerevisiae/genética
10.
Science ; 351(6280): aad6253, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-27013737

RESUMO

We used whole-genome design and complete chemical synthesis to minimize the 1079-kilobase pair synthetic genome of Mycoplasma mycoides JCVI-syn1.0. An initial design, based on collective knowledge of molecular biology combined with limited transposon mutagenesis data, failed to produce a viable cell. Improved transposon mutagenesis methods revealed a class of quasi-essential genes that are needed for robust growth, explaining the failure of our initial design. Three cycles of design, synthesis, and testing, with retention of quasi-essential genes, produced JCVI-syn3.0 (531 kilobase pairs, 473 genes), which has a genome smaller than that of any autonomously replicating cell found in nature. JCVI-syn3.0 retains almost all genes involved in the synthesis and processing of macromolecules. Unexpectedly, it also contains 149 genes with unknown biological functions. JCVI-syn3.0 is a versatile platform for investigating the core functions of life and for exploring whole-genome design.


Assuntos
DNA Bacteriano/síntese química , Genes Sintéticos/fisiologia , Genoma Bacteriano , Mycoplasma mycoides/genética , Células Artificiais , Códon/genética , Elementos de DNA Transponíveis , DNA Bacteriano/genética , Genes Essenciais , Genes Sintéticos/genética , Mutagênese , Proteínas/genética , RNA/genética , Biologia Sintética
11.
Genome Res ; 25(3): 435-44, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25654978

RESUMO

The availability of genetically tractable organisms with simple genomes is critical for the rapid, systems-level understanding of basic biological processes. Mycoplasma bacteria, with the smallest known genomes among free-living cellular organisms, are ideal models for this purpose, but the natural versions of these cells have genome complexities still too great to offer a comprehensive view of a fundamental life form. Here we describe an efficient method for reducing genomes from these organisms by identifying individually deletable regions using transposon mutagenesis and progressively clustering deleted genomic segments using meiotic recombination between the bacterial genomes harbored in yeast. Mycoplasmal genomes subjected to this process and transplanted into recipient cells yielded two mycoplasma strains. The first simultaneously lacked eight singly deletable regions of the genome, representing a total of 91 genes and ∼ 10% of the original genome. The second strain lacked seven of the eight regions, representing 84 genes. Growth assay data revealed an absence of genetic interactions among the 91 genes under tested conditions. Despite predicted effects of the deletions on sugar metabolism and the proteome, growth rates were unaffected by the gene deletions in the seven-deletion strain. These results support the feasibility of using single-gene disruption data to design and construct viable genomes lacking multiple genes, paving the way toward genome minimization. The progressive clustering method is expected to be effective for the reorganization of any mega-sized DNA molecules cloned in yeast, facilitating the construction of designer genomes in microbes as well as genomic fragments for genetic engineering of higher eukaryotes.


Assuntos
Bactérias/genética , Transferência Genética Horizontal , Genoma Bacteriano , Família Multigênica , Deleção de Sequência , Leveduras/genética , Elementos de DNA Transponíveis
12.
Nucleic Acids Res ; 42(14): e111, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24914053

RESUMO

Toward achieving rapid and large scale genome modification directly in a target organism, we have developed a new genome engineering strategy that uses a combination of bioinformatics aided design, large synthetic DNA and site-specific recombinases. Using Cre recombinase we swapped a target 126-kb segment of the Escherichia coli genome with a 72-kb synthetic DNA cassette, thereby effectively eliminating over 54 kb of genomic DNA from three non-contiguous regions in a single recombination event. We observed complete replacement of the native sequence with the modified synthetic sequence through the action of the Cre recombinase and no competition from homologous recombination. Because of the versatility and high-efficiency of the Cre-lox system, this method can be used in any organism where this system is functional as well as adapted to use with other highly precise genome engineering systems. Compared to present-day iterative approaches in genome engineering, we anticipate this method will greatly speed up the creation of reduced, modularized and optimized genomes through the integration of deletion analyses data, transcriptomics, synthetic biology and site-specific recombination.


Assuntos
Engenharia Genética/métodos , Recombinação Genética , Deleção Cromossômica , DNA/biossíntese , Escherichia coli/genética , Genoma Bacteriano , Genômica/métodos , Integrases/metabolismo , Biologia Sintética/métodos
14.
Nat Methods ; 11(5): 521-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24781325

RESUMO

The DNA technologies developed over the past 20 years for reading and writing the genetic code converged when the first synthetic cell was created 4 years ago. An outcome of this work has been an extraordinary set of tools for synthesizing, assembling, engineering and transplanting whole bacterial genomes. Technical progress, options and applications for bacterial genome design, assembly and activation are discussed.


Assuntos
Engenharia Genética/métodos , Genoma Bacteriano , Biologia Sintética/métodos , Biologia de Sistemas , Biotecnologia/métodos , Sistema Livre de Células , Clonagem Molecular , DNA/metabolismo , Desoxirribonucleases/metabolismo , Regulação da Expressão Gênica , Vetores Genéticos , Mycoplasma/genética , Saccharomyces cerevisiae/genética
15.
Nat Protoc ; 9(4): 743-50, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24603933

RESUMO

Direct cell-to-cell transfer of genomes from bacteria to yeast facilitates genome engineering for bacteria that are not amenable to genetic manipulation by allowing instead for the utilization of the powerful yeast genetic tools. Here we describe a protocol for transferring whole genomes from bacterial cells to yeast spheroplasts without any DNA purification process. The method is dependent on the treatment of the bacterial and yeast cellular mixture with PEG, which induces cell fusion, engulfment, aggregation or lysis. Over 80% of the bacterial genomes transferred in this way are complete, on the basis of structural and functional tests. Excluding the time required for preparing starting cultures and for incubating cells to form final colonies, the protocol can be completed in 3 h.


Assuntos
Engenharia Genética/métodos , Genoma Bacteriano , Saccharomyces cerevisiae/genética , Clonagem Molecular , DNA/genética , Mycoplasma mycoides/genética , Esferoplastos
16.
Sci Transl Med ; 5(185): 185ra68, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23677594

RESUMO

During the 2009 H1N1 influenza pandemic, vaccines for the virus became available in large quantities only after human infections peaked. To accelerate vaccine availability for future pandemics, we developed a synthetic approach that very rapidly generated vaccine viruses from sequence data. Beginning with hemagglutinin (HA) and neuraminidase (NA) gene sequences, we combined an enzymatic, cell-free gene assembly technique with enzymatic error correction to allow rapid, accurate gene synthesis. We then used these synthetic HA and NA genes to transfect Madin-Darby canine kidney (MDCK) cells that were qualified for vaccine manufacture with viral RNA expression constructs encoding HA and NA and plasmid DNAs encoding viral backbone genes. Viruses for use in vaccines were rescued from these MDCK cells. We performed this rescue with improved vaccine virus backbones, increasing the yield of the essential vaccine antigen, HA. Generation of synthetic vaccine seeds, together with more efficient vaccine release assays, would accelerate responses to influenza pandemics through a system of instantaneous electronic data exchange followed by real-time, geographically dispersed vaccine production.


Assuntos
Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Pandemias/prevenção & controle , Vacinas Sintéticas/imunologia , Animais , Linhagem Celular , Simulação por Computador , Cães , Genes Sintéticos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Subtipo H7N9 do Vírus da Influenza A/imunologia , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Neuraminidase/genética , Vírus Reordenados/imunologia , Reprodutibilidade dos Testes , Carga Viral
17.
Nat Methods ; 10(5): 410-2, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23542886

RESUMO

Transfer of genomes into yeast facilitates genome engineering for genetically intractable organisms, but this process has been hampered by the need for cumbersome isolation of intact genomes before transfer. Here we demonstrate direct cell-to-cell transfer of bacterial genomes as large as 1.8 megabases (Mb) into yeast under conditions that promote cell fusion. Moreover, we discovered that removal of restriction endonucleases from donor bacteria resulted in the enhancement of genome transfer.


Assuntos
Genoma Bacteriano , Genoma Fúngico , Transfecção
18.
Emerg Microbes Infect ; 2(8): e52, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26038486

RESUMO

The timing of vaccine availability is essential for an effective response to pandemic influenza. In 2009, vaccine became available after the disease peak, and this has motivated the development of next generation vaccine technologies for more rapid responses. The SAM(®) vaccine platform, now in pre-clinical development, is based on a synthetic, self-amplifying mRNA, delivered by a synthetic lipid nanoparticle (LNP). When used to express seasonal influenza hemagglutinin (HA), a SAM vaccine elicited potent immune responses, comparable to those elicited by a licensed influenza subunit vaccine preparation. When the sequences coding for the HA and neuraminidase (NA) genes from the H7N9 influenza outbreak in China were posted on a web-based data sharing system, the combination of rapid and accurate cell-free gene synthesis and SAM vaccine technology allowed the generation of a vaccine candidate in 8 days. Two weeks after the first immunization, mice had measurable hemagglutinin inhibition (HI) and neutralizing antibody titers against the new virus. Two weeks after the second immunization, all mice had HI titers considered protective. If the SAM vaccine platform proves safe, potent, well tolerated and effective in humans, fully synthetic vaccine technologies could provide unparalleled speed of response to stem the initial wave of influenza outbreaks, allowing first availability of a vaccine candidate days after the discovery of a new virus.

19.
Nucleic Acids Res ; 40(20): 10375-83, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22941652

RESUMO

Marine cyanobacteria of the genus Prochlorococcus represent numerically dominant photoautotrophs residing throughout the euphotic zones in the open oceans and are major contributors to the global carbon cycle. Prochlorococcus has remained a genetically intractable bacterium due to slow growth rates and low transformation efficiencies using standard techniques. Our recent successes in cloning and genetically engineering the AT-rich, 1.1 Mb Mycoplasma mycoides genome in yeast encouraged us to explore similar methods with Prochlorococcus. Prochlorococcus MED4 has an AT-rich genome, with a GC content of 30.8%, similar to that of Saccharomyces cerevisiae (38%), and contains abundant yeast replication origin consensus sites (ACS) evenly distributed around its 1.66 Mb genome. Unlike Mycoplasma cells, which use the UGA codon for tryptophane, Prochlorococcus uses the standard genetic code. Despite this, we observed no toxic effects of several partial and 15 whole Prochlorococcus MED4 genome clones in S. cerevisiae. Sequencing of a Prochlorococcus genome purified from yeast identified 14 single base pair missense mutations, one frameshift, one single base substitution to a stop codon and one dinucleotide transversion compared to the donor genomic DNA. We thus provide evidence of transformation, replication and maintenance of this 1.66 Mb intact bacterial genome in S. cerevisiae.


Assuntos
Genoma Bacteriano , Prochlorococcus/genética , Clonagem Molecular , Genes Bacterianos , Mutação , Origem de Replicação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Análise de Sequência de DNA
20.
Metab Eng ; 14(3): 196-204, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22629570

RESUMO

The construction of large DNA molecules that encode pathways, biological machinery, and entire genomes has been limited to the reproduction of natural sequences. However, now that robust methods for assembling hundreds of DNA fragments into constructs > 20 kb are readily available, optimization of large genetic elements for metabolic engineering purposes is becoming more routine. Here, various DNA assembly methodologies are reviewed and some of their potential applications are discussed. We tested the potential of DNA assembly to install rational changes in complex biosynthetic pathways, their potential for generating complex libraries, and consider how various strategies are applicable to metabolic engineering.


Assuntos
DNA/química , Biblioteca Gênica , DNA/genética , Engenharia Metabólica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA