Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Circadian Rhythms ; 20: 1, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561348

RESUMO

Many critical life processes are regulated by input from 24-hour external light/dark cycles, such as metabolism, cellular homeostasis, and detoxification. The circadian clock, which helps coordinate the response to these diurnal light/dark cycles, remains rhythmic across lifespan; however, rhythmic transcript expression is altered during normal aging. To better understand how aging impacts diurnal expression, we present an improved Fourier-based method for detecting and visualizing rhythmicity that is based on the relative power of the 24-hour period compared to other periods (RP24). We apply RP24 to transcript-level expression profiles from the heads of young (5-day) and old (55-day) Drosophila melanogaster, and reveal novel age-dependent rhythmicity changes that may be masked at the gene level. We show that core clock transcripts phase advance during aging, while most rhythmic transcripts phase delay. Transcripts rhythmic only in young flies tend to peak before lights on, while transcripts only rhythmic in old peak after lights on. We show that several pathways, including glutathione metabolism, gain or lose coordinated rhythmic expression with age, providing insight into possible mechanisms of age-onset neurodegeneration. Remarkably, we find that many pathways show very robust coordinated rhythms across lifespan, highlighting their putative roles in promoting neural health. We investigate statistically enriched transcription factor binding site motifs that may be involved in these rhythmicity changes.

2.
Front Aging ; 3: 983373, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118990

RESUMO

Blue light (BL) is becoming increasingly prevalent in artificial illumination, raising concerns about its potential health hazard to humans. In fact, there is evidence suggesting that acute BL exposure may lead to oxidative stress and death of retinal cells specialized for photoreception. On the other hand, recent studies in Drosophila melanogaster demonstrated that chronic BL exposure across lifespan leads to accelerated aging manifested in reduced lifespan and brain neurodegeneration even in flies with genetically ablated eyes, suggesting that BL can damage cells and tissues not specialized for light perception. At the physiological level, BL exposure impairs mitochondria function in flies, but the metabolic underpinnings of these effects have not been studied. Here, we investigated effects of chronic BL on metabolic pathways in heads of eyes absent (eya 2 ) mutant flies in order to focus on extra-retinal tissues. We compared metabolomic profiles in flies kept for 10 or 14 days in constant BL or constant darkness, using LC-MS and GC-MS. Data analysis revealed significant alterations in the levels of several metabolites suggesting that critical cellular pathways are impacted in BL-exposed flies. In particular, dramatic metabolic rearrangements are observed in heads of flies kept in BL for 14 days, including highly elevated levels of succinate but reduced levels of pyruvate and citrate, suggesting impairments in energy production. These flies also show onset of neurodegeneration and our analysis detected significantly reduced levels of several neurotransmitters including glutamate and Gamma-aminobutyric acid (GABA), suggesting that BL disrupts brain homeostasis. Taken together, these data provide novel insights into the mechanisms by which BL interferes with vital metabolic pathways that are conserved between fly and human cells.

3.
NPJ Aging ; 8(1): 11, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35927421

RESUMO

Blue light is a predominant component of light emitting devices (LEDs), which are increasingly present in our environment. There is already accumulating evidence that blue light exposure causes damage to retinal cells in vitro and in vivo; however, much less is known about potential effects of blue light on non-retinal cells. That blue light may be detrimental at the organismal level independent from retinal effect was recently shown by findings that it reduces lifespan in worms and also in flies with genetically ablated retinas. Here, we investigated the effects of blue light exposure across the fly lifespan and found that susceptibility to blue light stress is strongly age-dependent. The blue light of the same intensity and duration reduced survival and increased neurodegeneration more significantly in old flies than in young flies. These differences appear to be caused, at least in part, by impairments of mitochondrial respiratory function. We report that blue light significantly reduces the activity of Complex II in the electron transport system and decrease the biochemical activity of succinate dehydrogenase in both young and old flies. In addition, complex I and complex IV activities are reduced by age, as are ATP levels. We therefore propose that older flies are more sensitive to blue light because the light-induced mitochondrial damage potentiates the age-related impairments in energy metabolism that occurs even in darkness. Taken together, our results show that damaging effects of blue light at the organismal level are strongly age dependent and are associated with reduced activity of specific components of energy producing pathways in mitochondria.

4.
Neurobiol Dis ; 170: 105770, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35588988

RESUMO

Although mutations in the microtubules-associated protein Tau have long been connected with several neurodegenerative diseases, the underlying molecular mechanisms causing these tauopathies are still not fully understood. Studies in various models suggested that dominant gain-of-function effects underlie the pathogenicity of these mutants; however, there is also evidence that the loss of normal physiological functions of Tau plays a role in tauopathies. Previous studies on Tau in Drosophila involved expressing the human Tau protein in the background of the endogenous Tau gene in addition to inducing high expression levels. To study Tau pathology in more physiological conditions, we recently created Drosophila knock-in models that express either wildtype human Tau (hTauWT) or disease-associated mutant hTau (hTauV337M and hTauK369I) in place of the endogenous Drosophila Tau (dTau). Analyzing these flies as homozygotes, we could therefore detect recessive effects of the mutations while identifying dominant effects in heterozygotes. Using memory, locomotion and sleep assays, we found that homozygous mutant hTau flies showed deficits already when quite young whereas in heterozygous flies, disease phenotypes developed with aging. Homozygotes also revealed an increase in microtubule diameter, suggesting that changes in the cytoskeleton underlie the axonal degeneration we observed in these flies. In contrast, heterozygous mutant hTau flies showed abnormal axonal targeting and no detectable changes in microtubules. However, we previously showed that heterozygosity for hTauV337M interfered with synaptic homeostasis in central pacemaker neurons and we now show that heterozygous hTauK369I flies have decreased levels of proteins involved in the release of synaptic vesicles. Taken together, our results demonstrate that both mutations induce a combination of dominant and recessive disease-related phenotypes that provide behavioral and molecular insights into the etiology of Tauopathies.


Assuntos
Demência Frontotemporal , Tauopatias , Animais , Modelos Animais de Doenças , Drosophila/metabolismo , Mutação/genética , Fenótipo , Tauopatias/patologia , Proteínas tau/genética , Proteínas tau/metabolismo
5.
Aging (Albany NY) ; 12(11): 10041-10058, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32484787

RESUMO

Lactate dehydrogenase (LDH) catalyzes the conversion of glycolysis-derived pyruvate to lactate. Lactate has been shown to play key roles in brain energetics and memory formation. However, lactate levels are elevated in aging and Alzheimer's disease patients, and it is not clear whether lactate plays protective or detrimental roles in these contexts. Here we show that Ldh transcript levels are elevated and cycle with diurnal rhythm in the heads of aged flies and this is associated with increased LDH protein, enzyme activity, and lactate concentrations. To understand the biological significance of increased Ldh gene expression, we genetically manipulated Ldh levels in adult neurons or glia. Overexpression of Ldh in both cell types caused a significant reduction in lifespan whereas Ldh down-regulation resulted in lifespan extension. Moreover, pan-neuronal overexpression of Ldh disrupted circadian locomotor activity rhythms and significantly increased brain neurodegeneration. In contrast, reduction of Ldh in neurons delayed age-dependent neurodegeneration. Thus, our unbiased genetic approach identified Ldh and lactate as potential modulators of aging and longevity in flies.


Assuntos
Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , L-Lactato Desidrogenase/metabolismo , Longevidade/fisiologia , Animais , Animais Geneticamente Modificados , Encéfalo/citologia , Encéfalo/patologia , Ritmo Circadiano/fisiologia , Proteínas de Drosophila/genética , Feminino , Humanos , L-Lactato Desidrogenase/genética , Ácido Láctico/análise , Ácido Láctico/metabolismo , Locomoção/fisiologia , Masculino , Neurônios/metabolismo , Neurônios/patologia
6.
Front Neurosci ; 14: 232, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292325

RESUMO

A hallmark feature of Alzheimer's disease (AD) and other Tauopathies, like Frontotemporal Dementia with Parkinsonism linked to chromosome 17 (FTDP-17), is the accumulation of neurofibrillary tangles composed of the microtubule-associated protein Tau. As in AD, symptoms of FTDP-17 include cognitive decline, neuronal degeneration, and disruptions of sleep patterns. However, mechanisms by which Tau may lead to these disturbances in sleep and activity patterns are unknown. To identify such mechanisms, we have generated novel Drosophila Tauopathy models by replacing endogenous fly dTau with normal human Tau (hTau) or the FTDP-17 causing hTauV337M mutation. This mutation is localized in one of the microtubule-binding domains of hTau and has a dominant effect. Analyzing heterozygous flies, we found that aged hTauV337M flies show neuronal degeneration and locomotion deficits when compared to wild type or hTauWT flies. Furthermore, hTauV337M flies are hyperactive and they show a fragmented sleep pattern. These changes in the sleep/activity pattern are accompanied by morphological changes in the projection pattern of the central pacemaker neurons. These neurons show daily fluctuations in their connectivity, whereby synapses are increased during the day and reduced during sleep. Synapse formation requires cytoskeletal changes that can be detected by the accumulation of the end-binding protein 1 (EB1) at the site of synapse formation. Whereas, hTauWT flies show the normal day/night changes in EB1 accumulation, hTauV337M flies do not show this fluctuation. This suggests that hTauV337M disrupts sleep patterns by interfering with the cytoskeletal changes that are required for the synaptic homeostasis of central pacemaker neurons.

7.
NPJ Aging Mech Dis ; 5: 8, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31636947

RESUMO

Light is necessary for life, but prolonged exposure to artificial light is a matter of increasing health concern. Humans are exposed to increased amounts of light in the blue spectrum produced by light-emitting diodes (LEDs), which can interfere with normal sleep cycles. The LED technologies are relatively new; therefore, the long-term effects of exposure to blue light across the lifespan are not understood. We investigated the effects of light in the model organism, Drosophila melanogaster, and determined that flies maintained in daily cycles of 12-h blue LED and 12-h darkness had significantly reduced longevity compared with flies maintained in constant darkness or in white light with blue wavelengths blocked. Exposure of adult flies to 12 h of blue light per day accelerated aging phenotypes causing damage to retinal cells, brain neurodegeneration, and impaired locomotion. We report that brain damage and locomotor impairments do not depend on the degeneration in the retina, as these phenotypes were evident under blue light in flies with genetically ablated eyes. Blue light induces expression of stress-responsive genes in old flies but not in young, suggesting that cumulative light exposure acts as a stressor during aging. We also determined that several known blue-light-sensitive proteins are not acting in pathways mediating detrimental light effects. Our study reveals the unexpected effects of blue light on fly brain and establishes Drosophila as a model in which to investigate long-term effects of blue light at the cellular and organismal level.

8.
Free Radic Biol Med ; 119: 62-68, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29277395

RESUMO

Circadian clocks generate daily rhythms in gene expression, cellular functions, physiological processes and behavior. The core clock mechanism consists of transcriptional-translational negative feedback loops that turn over with an endogenous circa 24h period. Classical genetic experiments in the fly Drosophila melanogaster played an essential role in identification of clock genes that turned out to be largely conserved between flies and mammals. Like in mammals, circadian clocks in flies generate transcriptional rhythms in a variety of metabolic pathways related to feeding and detoxification. Given that rhythms pervade metabolism and the loss of metabolic homeostasis is involved in aging and disease, there is increasing interest in understanding how the clocks and the rhythms they control change during aging. The importance of circadian clocks for healthy aging is supported by studies reporting that genetic or environmental clock disruptions are associated with reduced healthspan and lifespan. For example, arrhythmia caused by mutations in core clock genes lead to symptoms of accelerated aging in both flies and mammals, including neurodegenerative phenotypes. Despite the wealth of descriptive data, the mechanisms by which functional clocks confer healthspan and lifespan benefits are poorly understood. Studies in Drosophila discussed here are beginning to unravel causative relationships between the circadian system and aging. In particular, recent data suggest that clocks may be involved in inducing rhythmic expression of specific genes late in life in response to age-related increase in oxidative stress. This review will summarize insights into links between circadian system and aging in Drosophila, which were obtained using powerful genetics tools available for this model organism and taking advantage of the short adult lifespan in flies that is measured in days rather than years.


Assuntos
Envelhecimento/fisiologia , Ritmo Circadiano/fisiologia , Drosophila melanogaster/fisiologia , Regulação da Expressão Gênica/fisiologia , Longevidade/fisiologia , Animais , Relógios Circadianos/fisiologia , Estresse Oxidativo/fisiologia
9.
Nat Commun ; 8: 14529, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28221375

RESUMO

Disruption of the circadian clock, which directs rhythmic expression of numerous output genes, accelerates aging. To enquire how the circadian system protects aging organisms, here we compare circadian transcriptomes in heads of young and old Drosophila melanogaster. The core clock and most output genes remained robustly rhythmic in old flies, while others lost rhythmicity with age, resulting in constitutive over- or under-expression. Unexpectedly, we identify a subset of genes that adopted increased or de novo rhythmicity during aging, enriched for stress-response functions. These genes, termed late-life cyclers, were also rhythmically induced in young flies by constant exposure to exogenous oxidative stress, and this upregulation is CLOCK-dependent. We also identify age-onset rhythmicity in several putative primary piRNA transcripts overlapping antisense transposons. Our results suggest that, as organisms age, the circadian system shifts greater regulatory priority to the mitigation of accumulating cellular stress.


Assuntos
Adaptação Fisiológica/genética , Envelhecimento/genética , Ritmo Circadiano/genética , Drosophila melanogaster/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Transcriptoma , Animais , Relógios Circadianos/genética , Proteínas de Drosophila/genética , Ontologia Genética , Genes de Insetos/genética , Estresse Oxidativo
10.
Front Physiol ; 8: 1131, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375400

RESUMO

Circadian clocks consist of molecular negative feedback loops that coordinate physiological, neurological, and behavioral variables into "circa" 24-h rhythms. Rhythms in behavioral and other circadian outputs tend to weaken during aging, as evident in progressive disruptions of sleep-wake cycles in aging organisms. However, less is known about the molecular changes in the expression of clock genes and proteins that may lead to the weakening of circadian outputs. Western blot studies have demonstrated that the expression of the core clock protein PERIOD (PER) declines in the heads of aged Drosophila melanogaster flies. This age-related decline in PER does not occur in the central pacemaker neurons but has been demonstrated so far in retinal photoreceptors. Besides photoreceptors, clock proteins are also expressed in fly glia, which play important roles in neuronal homeostasis and are further categorized into subtypes based on morphology and function. While previous studies of mammalian glial cells have demonstrated the presence of functional clocks in astrocytes and microglia, it is not known which glial cell types in Drosophila express clock proteins and how their expression may change in aged individuals. Here, we conducted immunocytochemistry experiments to identify which glial subtypes express PER protein suggestive of functional circadian clocks. Glial cell subtypes that showed night-time accumulation and day-time absence in PER consistent with oscillations reported in the pacemaker neurons were selected to compare the level of PER protein between young and old flies. Our data demonstrate that some glial subtypes show rhythmic PER expression and the relative PER levels become dampened with advanced age. Identification of glial cell types that display age-related dampening of PER levels may help to understand the cellular changes that contribute to the loss of homeostasis in the aging brain.

11.
Cell Metab ; 23(1): 143-54, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26626459

RESUMO

Endogenous circadian clocks orchestrate several metabolic and signaling pathways that are known to modulate lifespan, suggesting clocks as potential targets for manipulation of metabolism and lifespan. We report here that the core circadian clock genes, timeless (tim) and period (per), are required for the metabolic and lifespan responses to DR in Drosophila. Consistent with the involvement of a circadian mechanism, DR enhances the amplitude of cycling of most circadian clock genes, including tim, in peripheral tissues. Mass-spectrometry-based lipidomic analysis suggests a role of tim in cycling of specific medium chain triglycerides under DR. Furthermore, overexpression of tim in peripheral tissues improves its oscillatory amplitude and extends lifespan under ad libitum conditions. Importantly, effects of tim on lifespan appear to be mediated through enhanced fat turnover. These findings identify a critical role for specific clock genes in modulating the effects of nutrient manipulation on fat metabolism and aging.


Assuntos
Proteínas CLOCK/metabolismo , Relógios Circadianos , Proteínas de Drosophila/metabolismo , Metabolismo dos Lipídeos , Longevidade , Animais , Proteínas CLOCK/genética , Restrição Calórica , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Masculino , Transdução de Sinais
12.
Physiol Entomol ; 41(4): 369-377, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28503020

RESUMO

Circadian coordination of metabolism, physiology, and behaviour is found in all living kingdoms. Clock genes are transcriptional regulators, and their rhythmic activities generate daily rhythms in clock-controlled genes which result in cellular and organismal rhythms. Insects provide numerous examples of rhythms in behaviour and reproduction, but less is known about control of metabolic processes by circadian clocks in insects. Recent data suggest that several pathways involved in protecting cells from oxidative stress may be modulated by the circadian system, including genes involved in glutathione (GSH) biosynthesis. Specifically, rhythmic expression of the gene encoding the catalytic subunit (Gclc) of the rate-limiting GSH biosynthetic enzyme was detected in Drosophila melanogaster heads. The aim of this study was to determine which clocks in the fly multi-oscillatory circadian system are responsible for Gclc rhythms. Genetic disruption of tissue-specific clocks in D. melanogaster revealed that transcriptional rhythms in Gclc mRNA levels occur independently of the central pacemaker neurons, because these rhythms persisted in heads of behaviourally arrhythmic flies with a disabled central clock but intact peripheral clocks. Disrupting the clock specifically in glial cells abolished rhythmic expression of Gclc, suggesting that glia play an important role in Gclc transcriptional regulation, which may contribute to maintaining homeostasis in the fly nervous system.

13.
Aging Cell ; 14(5): 916-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26102220

RESUMO

Adequate energy stores are essential for survival, and sophisticated neuroendocrine mechanisms evolved to stimulate foraging in response to nutrient deprivation. Food search behavior is usually investigated in young animals, and it is not known how aging alters this behavior. To address this question in Drosophila melanogaster, we compared the ability to locate food by olfaction in young and old flies using a food-filled trap. As aging is associated with a decline in motor functions, learning, and memory, we expected that aged flies would take longer to enter the food trap than their young counterparts. Surprisingly, old flies located food with significantly shorter latency than young ones. Robust food search behavior was associated with significantly lower fat reserves and lower starvation resistance in old flies. Food-finding latency (FFL) was shortened in young wild-type flies that were starved until their fat was depleted but also in heterozygous chico mutants with reduced insulin receptor activity and higher fat deposits. Conversely, food trap entry was delayed in old flies with increased insulin signaling. Our results suggest that the difference in FFL between young and old flies is linked to age-dependent differences in metabolic status and may be mediated by reduced insulin signaling.


Assuntos
Envelhecimento/metabolismo , Comportamento Alimentar , Animais , Drosophila melanogaster/genética , Insulina/metabolismo , Transdução de Sinais , Fatores de Tempo
14.
Curr Opin Insect Sci ; 7: 82-86, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26000238

RESUMO

Circadian clocks are cell-autonomous molecular feedback loops that generate daily rhythms in gene expression, cellular functions, physiological processes and behavior. The mechanisms of circadian clocks are well understood in young fruit flies Drosophila melanogaster, but less is known about how circadian system changes during organismal aging. Similar as in humans, rest/activity rhythms tend to weaken with age in fruit flies, suggesting conservation of aging-related changes in the circadian system. It has been shown that aging is associated with reduced expression of core clock genes in peripheral head clocks while similar reduction may not occur in central clock neurons regulating behavioral rhythms. Arrhythmic flies with mutations in core clock genes display accelerated aging and shortened lifespan suggesting that weakened circadian rhythms may contribute to aging phenotypes. To understand whether strong circadian clocks support organism's healthspan and lifespan, future research needs to focus on age-related changes in clock genes as well as clock-controlled genes in specific organs and tissues.

15.
Front Genet ; 6: 83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25806044

RESUMO

Circadian coordination of metabolism, physiology, and neural functions contributes to healthy aging and disease prevention. Clock genes govern the daily rhythmic expression of target genes whose activities underlie such broad physiological parameters as maintenance of redox homeostasis. Previously, we reported that glutathione (GSH) biosynthesis is controlled by the circadian system via effects of the clock genes on expression of the catalytic (Gclc) and modulatory (Gclm) subunits comprising the glutamate cysteine ligase (GCL) holoenzyme. The objective of this study was to determine whether and how aging, which leads to weakened circadian oscillations, affects the daily profiles of redox-active biomolecules. We found that fly aging is associated with altered profiles of Gclc and Gclm expression at both the mRNA and protein levels. Analysis of free aminothiols and GCL activity revealed that aging abolishes daily oscillations in GSH levels and alters the activity of glutathione biosynthetic pathways. Unlike GSH, its precursors and products of catabolism, methionine, cysteine and cysteinyl-glycine, were not rhythmic in young or old flies, while rhythms of the glutathione oxidation product, GSSG, were detectable. We conclude that the temporal regulation of GSH biosynthesis is altered in the aging organism and that age-related loss of circadian modulation of pathways involved in glutathione production is likely to impair temporal redox homeostasis.

16.
Neurobiol Dis ; 77: 117-26, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25766673

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by severe cognitive deterioration. While causes of AD pathology are debated, a large body of evidence suggests that increased cleavage of Amyloid Precursor Protein (APP) producing the neurotoxic Amyloid-ß (Aß) peptide plays a fundamental role in AD pathogenesis. One of the detrimental behavioral symptoms commonly associated with AD is the fragmentation of sleep-activity cycles with increased nighttime activity and daytime naps in humans. Sleep-activity cycles, as well as physiological and cellular rhythms, which may be important for neuronal homeostasis, are generated by a molecular system known as the circadian clock. Links between AD and the circadian system are increasingly evident but not well understood. Here we examined whether genetic manipulations of APP-like (APPL) protein cleavage in Drosophila melanogaster affect rest-activity rhythms and core circadian clock function in this model organism. We show that the increased ß-cleavage of endogenous APPL by the ß-secretase (dBACE) severely disrupts circadian behavior and leads to reduced expression of clock protein PER in central clock neurons of aging flies. Our data suggest that behavioral rhythm disruption is not a product of APPL-derived Aß production but rather may be caused by a mechanism common to both α and ß-cleavage pathways. Specifically, we show that increased production of the endogenous Drosophila Amyloid Intracellular Domain (dAICD) caused disruption of circadian rest-activity rhythms, while flies overexpressing endogenous APPL maintained stronger circadian rhythms during aging. In summary, our study offers a novel entry point toward understanding the mechanism of circadian rhythm disruption in Alzheimer's disease.


Assuntos
Envelhecimento , Precursor de Proteína beta-Amiloide/metabolismo , Relógios Circadianos/genética , Regulação da Expressão Gênica/genética , Fatores Etários , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Animais Geneticamente Modificados , Sistema Nervoso Central/citologia , Desintegrinas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Análise de Fourier , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Longevidade , Metaloendopeptidases/metabolismo , Atividade Motora/genética , Neurônios/metabolismo , Proteínas Circadianas Period/metabolismo
17.
PLoS One ; 9(8): e106068, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25171136

RESUMO

Circadian clocks coordinate physiological, neurological, and behavioral functions into circa 24 hour rhythms, and the molecular mechanisms underlying circadian clock oscillations are conserved from Drosophila to humans. Clock oscillations and clock-controlled rhythms are known to dampen during aging; additionally, genetic or environmental clock disruption leads to accelerated aging and increased susceptibility to age-related pathologies. Neurodegenerative diseases, such as Alzheimer's disease (AD), are associated with a decay of circadian rhythms, but it is not clear whether circadian disruption accelerates neuronal and motor decline associated with these diseases. To address this question, we utilized transgenic Drosophila expressing various Amyloid-ß (Aß) peptides, which are prone to form aggregates characteristic of AD pathology in humans. We compared development of AD-like symptoms in adult flies expressing Aß peptides in the wild type background and in flies with clocks disrupted via a null mutation in the clock gene period (per01). No significant differences were observed in longevity, climbing ability and brain neurodegeneration levels between control and clock-deficient flies, suggesting that loss of clock function does not exacerbate pathogenicity caused by human-derived Aß peptides in flies. However, AD-like pathologies affected the circadian system in aging flies. We report that rest/activity rhythms were impaired in an age-dependent manner. Flies expressing the highly pathogenic arctic Aß peptide showed a dramatic degradation of these rhythms in tune with their reduced longevity and impaired climbing ability. At the same time, the central pacemaker remained intact in these flies providing evidence that expression of Aß peptides causes rhythm degradation downstream from the central clock mechanism.


Assuntos
Envelhecimento/fisiologia , Doença de Alzheimer/fisiopatologia , Ritmo Circadiano/fisiologia , Drosophila melanogaster/fisiologia , Envelhecimento/genética , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Humanos , Imuno-Histoquímica , Longevidade/genética , Longevidade/fisiologia , Masculino , Atividade Motora/genética , Atividade Motora/fisiologia , Mutação , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Proteínas Circadianas Period/deficiência , Proteínas Circadianas Period/genética
18.
Exp Gerontol ; 48(11): 1260-5, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23916842

RESUMO

Daily life functions such as sleep and feeding oscillate with circa 24 h period due to endogenous circadian rhythms generated by circadian clocks. Genetic or environmental disruption of circadian rhythms is associated with various aging-related phenotypes. Circadian rhythms decay during normal aging, and there is a need to explore strategies that could avert age-related changes in the circadian system. Exercise was reported to delay aging in mammals. Here, we investigated whether daily exercise via stimulation of upward climbing movement could improve circadian rest/activity rhythms in aging Drosophila melanogaster. We found that repeated exercise regimen did not strengthen circadian locomotor activity rhythms in aging flies and had no effect on their lifespan. We also tested the effects of exercise on mobility and determined that regular exercise lowered age-specific climbing ability in both wild type and clock mutant flies. Interestingly, the climbing ability was most significantly reduced in flies carrying a null mutation in the core clock gene period, while rescue of this gene significantly improved climbing to wild type levels. Our work highlights the importance of period in sustaining endurance in aging flies exposed to physical challenge.


Assuntos
Envelhecimento/fisiologia , Ritmo Circadiano/fisiologia , Drosophila melanogaster/fisiologia , Esforço Físico/fisiologia , Envelhecimento/genética , Animais , Animais Geneticamente Modificados , Proteínas CLOCK/genética , Ritmo Circadiano/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Feminino , Genes de Insetos , Longevidade/genética , Longevidade/fisiologia , Masculino , Atividade Motora/genética , Atividade Motora/fisiologia , Mutação , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/fisiologia , Esforço Físico/genética
19.
Aging Cell ; 12(5): 752-62, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23692507

RESUMO

Circadian clocks generate daily rhythms in molecular, cellular, and physiological functions providing temporal dimension to organismal homeostasis. Recent evidence suggests two-way relationship between circadian clocks and aging. While disruption of the circadian clock leads to premature aging in animals, there is also age-related dampening of output rhythms such as sleep/wake cycles and hormonal fluctuations. Decay in the oscillations of several clock genes was recently reported in aged fruit flies, but mechanisms underlying these age-related changes are not understood. We report that the circadian light-sensitive protein CRYPTOCHROME (CRY) is significantly reduced at both mRNA and protein levels in heads of old Drosophila melanogaster. Restoration of CRY using the binary GAL4/UAS system in old flies significantly enhanced the mRNA oscillatory amplitude of several genes involved in the clock mechanism. Flies with CRY overexpressed in all clock cells maintained strong rest/activity rhythms in constant darkness late in life when rhythms were disrupted in most control flies. We also observed a remarkable extension of healthspan in flies with elevated CRY. Conversely, CRY-deficient mutants showed accelerated functional decline and accumulated greater oxidative damage. Interestingly, overexpression of CRY in central clock neurons alone was not sufficient to restore rest/activity rhythms or extend healthspan. Together, these data suggest novel anti-aging functions of CRY and indicate that peripheral clocks play an active role in delaying behavioral and physiological aging.


Assuntos
Ritmo Circadiano/fisiologia , Criptocromos/fisiologia , Drosophila/fisiologia , Fatores Etários , Animais , Comportamento Animal/fisiologia , Ritmo Circadiano/genética , Criptocromos/genética , Criptocromos/metabolismo , Drosophila/genética , Drosophila/metabolismo , Masculino , RNA Mensageiro/metabolismo
20.
Insect Biochem Mol Biol ; 43(6): 522-32, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23499932

RESUMO

Circadian clocks (oscillators) regulate multiple aspects of insect behaviour and physiology. The circadian system located in the male reproductive tract of Lepidoptera orchestrates rhythmic sperm release from testis and sperm maturation in the upper vas deferens (UVD). Our previous research on the cotton leafworm, Spodoptera littoralis, suggested rhythmic changes in the V-ATPase levels in the UVD epithelium, which correlated with rhythmic pH fluctuations in the UVD lumen. However, it was not known whether UVD cells contain clock mechanism that generates these daily fluctuations. In the current paper, we show circadian rhythm in the expression of clock gene period at the mRNA and protein level in the UVD epithelium. To determine the role of PER in V-ATPase and pH regulation, testes-UVD complexes were treated in vitro with double-stranded fragments of per mRNA (dsRNA). This treatment, which transiently lowered per mRNA and protein in the UVD, altered expression of V-ATPase c subunit. In addition, per RNAi caused a significant delay in the UVD lumen acidification. These data demonstrate that the UVD molecular oscillator involving the period gene plays an essential role in the regulation of rhythmic V-ATPase activity and periodic acidification of the UVD lumen.


Assuntos
Proteínas CLOCK/genética , Relógios Circadianos/genética , Spodoptera/crescimento & desenvolvimento , ATPases Vacuolares Próton-Translocadoras/genética , Animais , Comportamento Animal , Proteínas CLOCK/fisiologia , Epitélio/enzimologia , Regulação da Expressão Gênica , Concentração de Íons de Hidrogênio , Masculino , Interferência de RNA , Reprodução/genética , Espermatozoides/metabolismo , Spodoptera/genética , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA