Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(30): e202303916, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37224463

RESUMO

We present the synthesis of 1,1-bis(fluorosulfonyl)-2-(pyridin-1-ium-1-yl)ethan-1-ide, a bench-stable precursor to ethene-1,1-disulfonyl difluoride (EDSF). The novel SuFEx reagent, EDSF, is demonstrated in the preparation of 26 unique 1,1-bissulfonylfluoride substituted cyclobutenes via a cycloaddition reaction. The regioselective click cycloaddition reaction is rapid, straightforward, and highly efficient, enabling the generation of highly functionalized 4-membered ring (4MR) carbocycles. These carbocycles are valuable structural motifs found in numerous bioactive natural products and pharmaceutically relevant small molecules. Additionally, we showcase diversification of the novel cyclobutene cores through selective Cs2 CO3 -activated SuFEx click chemistry between a single S-F group and an aryl alcohol, yielding the corresponding sulfonate ester products with high efficiency. Finally, density functional theory calculations offer mechanistic insights about the reaction pathway.

2.
Commun Biol ; 6(1): 550, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217566

RESUMO

Herbicide resistance represents one of the biggest threats to our natural environment and agricultural sector. Thus, new herbicides are urgently needed to tackle the rise in herbicide-resistant weeds. Here, we employed a novel strategy to repurpose a 'failed' antibiotic into a new and target-specific herbicidal compound. Specifically, we identified an inhibitor of bacterial dihydrodipicolinate reductase (DHDPR), an enzyme involved in lysine biosynthesis in plants and bacteria, that exhibited no antibacterial activity but severely attenuated germination of the plant Arabidopsis thaliana. We confirmed that the inhibitor targets plant DHDPR orthologues in vitro, and exhibits no toxic effects against human cell lines. A series of analogues were then synthesised with improved efficacy in germination assays and against soil-grown A. thaliana. We also showed that our lead compound is the first lysine biosynthesis inhibitor with activity against both monocotyledonous and dicotyledonous weed species, by demonstrating its effectiveness at reducing the germination and growth of Lolium rigidum (rigid ryegrass) and Raphanus raphanistrum (wild radish). These results provide proof-of-concept that DHDPR inhibition may represent a much-needed new herbicide mode of action. Furthermore, this study exemplifies the untapped potential of repurposing 'failed' antibiotic scaffolds to fast-track the development of herbicide candidates targeting the respective plant enzymes.


Assuntos
Arabidopsis , Herbicidas , Humanos , Herbicidas/farmacologia , Di-Hidrodipicolinato Redutase/farmacologia , Lisina , Plantas Daninhas , Bactérias
3.
Biomaterials ; 295: 122046, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36804661

RESUMO

ß-Glucosidase (ß-Glu) is a ubiquitous enzyme which has multiple roles in medical diagnosis, food production, agriculture, etc. Existing ß-Glu assays have limitations such as complex operation, long running time, and high background noise. Here we report a red-emissive probe TBPG for measuring the activity of ß-Glu. The probe was synthesized through conjugating a ß-Glu targeting glucoside to an aggregation-induced emission (AIE) fluorophore. In the presence of ß-Glu, TBPG was hydrolyzed and exhibited a fluorescence turn-on process. The detection conditions including time, temperature, pH value, buffer, and probe concentration were optimized systematically. Afterwards, fluorescence titration was conducted showing an excellent linearity (R2 = 0.998), a wide linear dynamic range (0-5.0 U/mL), and a limit of detection as low as 0.6 U/L. The detection specificity and ion interference were evaluated by adding various biological species and ions to probe without or with ß-Glu. Next, we demonstrate the applicability of probe TBPG in determining the ß-Glu activity in living cells using confocal microscopy and flow cytometry. Finally, this newly established assay was applied to real soil samples. Comparable results were obtained as the commercial assay, manifesting its great potential in soil enzyme analysis.


Assuntos
Celulases , Corantes Fluorescentes , Fluorescência , Íons , Solo , Espectrometria de Fluorescência/métodos
4.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430646

RESUMO

Undecylenic acid, a monounsaturated fatty acid, is currently in clinical use as a topical antifungal agent, however the potential for therapeutic application in other disease settings has not been investigated. In this study, we describe a novel platform for the solubilization of fatty acids using amino acids and utilize this approach to define a tumoricidal activity and underlying mechanism for undecylenic acid. We examined a novel formulation of undecylenic acid compounded with L-Arginine, called GS-1, that induced concentration-dependent tumor cell death, with undecylenic acid being the cytotoxic component. Further investigation revealed that GS-1-mediated cell death was caspase-dependent with a reduction in mitochondrial membrane potential, suggesting a pro-apoptotic mechanism of action. Additionally, GS-1 was found to localize intracellularly to lipid droplets. In contrast to previous studies where lipid droplets have been shown to be protective against fatty acid-induced cell death, we showed that lipid droplets could not protect against GS-1-induced cytotoxicity. We also found a role for Fatty Acid Transport Protein 2 (FATP2) in the uptake of this compound. Collectively, this study demonstrates that GS-1 has effective pro-apoptotic antitumor activity in vitro and, together with the novel platform of fatty acid solubilization, contributes to the re-emerging field of fatty acids as potential anti-cancer therapeutics.


Assuntos
Apoptose , Ácidos Undecilênicos , Ácidos Undecilênicos/farmacologia , Ácidos Graxos/química , Caspases , Ácidos Graxos Monoinsaturados/farmacologia
5.
Proc Natl Acad Sci U S A ; 119(37): e2208540119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36070343

RESUMO

Diversity Oriented Clicking (DOC) is a discovery method geared toward the rapid synthesis of functional libraries. It combines the best attributes of both classical and modern click chemistries. DOC strategies center upon the chemical diversification of core "SuFExable" hubs-exemplified by 2-Substituted-Alkynyl-1-Sulfonyl Fluorides (SASFs)-enabling the modular assembly of compounds through multiple reaction pathways. We report here a range of stereoselective Michael-type addition pathways from SASF hubs including reactions with secondary amines, carboxylates, 1H-1,2,3-triazole, and halides. These high yielding conjugate addition pathways deliver unprecedented ß-substituted alkenyl sulfonyl fluorides as single isomers with minimal purification, greatly enriching the repertoire of DOC and holding true to the fundamentals of modular click chemistry. Further, we demonstrate the potential for biological function - a key objective of click chemistry - of this family of SASF-derived molecules as covalent inhibitors of human neutrophil elastase.


Assuntos
Química Click , Fluoretos , Elastase de Leucócito , Proteínas Secretadas Inibidoras de Proteinases , Ácidos Sulfínicos , Química Click/métodos , Fluoretos/síntese química , Fluoretos/química , Fluoretos/farmacologia , Humanos , Elastase de Leucócito/antagonistas & inibidores , Proteínas Secretadas Inibidoras de Proteinases/síntese química , Proteínas Secretadas Inibidoras de Proteinases/química , Proteínas Secretadas Inibidoras de Proteinases/farmacologia , Ácidos Sulfínicos/síntese química , Ácidos Sulfínicos/química , Ácidos Sulfínicos/farmacologia
6.
ACS Appl Bio Mater ; 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35993571

RESUMO

Trypsin is one of the most important enzymes of the digestive system produced by the pancreatic acinar cells. Abnormal trypsin activity will affect pancreatic function, resulting in the corresponding pathological changes in the human body. Herein, we present a strategy based on the ensemble of a novel dual warhead probe HPC-ESF and the natural trypsin substrate bovine serum albumin (BSA) for the detection of trypsin activity including in real urine samples. The ß-arylethenesulfonyl bearing HPC-ESF is nonemissive when dissolved in aqueous solution but becomes highly fluorescent upon conjugation to BSA through covalent bond formation with nucleophilic amino acids to create the HPC-ESF:BSA sensing system. The HPC-ESF:BSA complex can be hydrolyzed in the presence of trypsin, which results in a distinct fluorescence decrease in correlation with trypsin concentration and thus allows the detection of trypsin. Compared to previous methods, our covalent approach is simple to prepare and highly reliable. Our work will provide a different avenue for researchers to design fluorescent sensors based on a covalent labeling strategy, enriching the small library of functional groups available for such applications.

7.
Chem Commun (Camb) ; 57(57): 6991-6994, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34159967

RESUMO

The hydration of carbon-carbon triple bonds is an important and atom economic synthetic transformation. Herein, we report a mild and selective method for the catalytic Markovnikov hydration of (E)-aryl enynes to the corresponding enones, mediated through the bench-stable aminium salt, tris(4-bromophenyl)ammoniumyl hexachloroantimonate (TBPA). The chemoselective and diastereoselective method proceeds under neutral metal-free conditions, delivering excellent product yields from terminal and internal alkyne units. The synthesis of biologically important (E)-3-styrylisocoumarins, including a formal synthesis of the natural product achlisocoumarin III, demonstrates the utility of this novel transformation.

8.
Angew Chem Int Ed Engl ; 59(30): 12460-12469, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32301265

RESUMO

Diversity Oriented Clicking (DOC) is a unified click-approach for the modular synthesis of lead-like structures through application of the wide family of click transformations. DOC evolved from the concept of achieving "diversity with ease", by combining classic C-C π-bond click chemistry with recent developments in connective SuFEx-technologies. We showcase 2-Substituted-Alkynyl-1-Sulfonyl Fluorides (SASFs) as a new class of connective hub in concert with a diverse selection of click-cycloaddition processes. Through the selective DOC of SASFs with a range of dipoles and cyclic dienes, we report a diverse click-library of 173 unique functional molecules in minimal synthetic steps. The SuFExable library comprises 10 discrete heterocyclic core structures derived from 1,3- and 1,5-dipoles; while reaction with cyclic dienes yields several three-dimensional bicyclic Diels-Alder adducts. Growing the library to 278 discrete compounds through late-stage modification was made possible through SuFEx click derivatization of the pendant sulfonyl fluoride group in 96 well-plates-demonstrating the versatility of the DOC approach for the rapid synthesis of diverse functional structures. Screening for function against MRSA (USA300) revealed several lead hits with improved activity over methicillin.


Assuntos
Química Click , Ácidos Sulfínicos/química , Reação de Cicloadição , Estrutura Molecular
9.
Angew Chem Int Ed Engl ; 59(3): 1181-1186, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31709653

RESUMO

The boom in growth of 1,4-disubstituted triazole products, in particular, since the early 2000's, can be largely attributed to the birth of click chemistry and the discovery of the CuI -catalyzed azide-alkyne cycloaddition (CuAAC). Yet the synthesis of relatively simple, albeit important, 1-substituted-1,2,3-triazoles has been surprisingly more challenging. Reported here is a straightforward and scalable click-inspired protocol for the synthesis of 1-substituted-1,2,3-triazoles from organic azides and the bench stable acetylene surrogate ethenesulfonyl fluoride (ESF). The new transformation tolerates a wide selection of substrates and proceeds smoothly under metal-free conditions to give the products in excellent yield. Under controlled acidic conditions, the 1-substituted-1,2,3-triazole products undergo a Michael addition reaction with a second equivalent of ESF to give the unprecedented 1-substituted triazolium sulfonyl fluoride salts.

10.
Chem Commun (Camb) ; 54(47): 6020-6023, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29796551

RESUMO

We demonstrate 1,2-dibromoethane-1-sulfonyl fluoride (DESF) as a bench-stable and readily accessible precursor to the robust SuFEx connector, 1-bromoethene-1-sulfonyl fluoride (BESF). The in situ generation of BESF from DESF opens up several new reaction profiles, including application in the syntheses of unprecedented 3-substituted isoxazole-5-sulfonyl fluorides, 1-substituted-1H-1,2,3-triazole-4-sulfonyl fluorides, 2-amino-1-bromoethane-1-sulfonyl fluorides and 4-bromo-ß-sultams in good to excellent yields. These new modules comprise a pendant sulfonyl fluoride handle, which further undergoes facile and selective SuFEx reactions with a selection of aryl silyl ethers to generate stable and useful sulfonate connections.

11.
Chemistry ; 23(42): 9990-9995, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28612408

RESUMO

Amide bond formation is one of the most executed reactions in chemistry and biology. This is largely due to the ubiquity of the amide functional group in biological molecules, natural products and pharmaceutically important drugs. We report here the development of "SuFExAmide": a new sulfur-fluoride exchange (SuFEx) click chemistry based protocol for the efficient amidation of carboxylic acids via acyl fluoride intermediates. We have developed benzene-1,3-disulfonyl fluoride as a cost effective, powerful and versatile coupling agent, which delivers challenging secondary and tertiary amides in excellent yields from sterically hindered and electron-deficient amines. The straightforward method offers significant benefits over existing protocols in terms of substrate scope, efficiency and ease of operation and is demonstrated by the synthesis of 44 amides, including GNF6702, an antiprotozoal drug candidate. In the majority of cases, the amide products are obtained in high yield without the need for excess reagents or chromatographic purification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA