Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 213: 205-214, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30223125

RESUMO

The potential bioavailability of toxic chemicals from oil spills to water column organisms such as fish embryos may be influenced by physical dispersion along an energy gradient. For example, a surface slick with minimal wave action (low energy) could potentially produce different toxic effects from high energy situations such as pressurized discharge from a blown wellhead. Here we directly compared the toxicity of water accommodated fractions (WAFs) of oil prepared with low and high mixing energy (LEWAFs and HEWAFs, respectively) using surface oil samples collected during the 2010 Deepwater Horizon spill, and embryos of a representative nearshore species, red drum (Sciaenops ocellatus). Biological effects of each WAF type was quantified with several functional and morphological indices of developmental cardiotoxicity, providing additional insight into species-specific responses to oil exposure. Although the two WAF preparations yielded different profiles of polycyclic aromatic hydrocarbons (PAHs), cardiotoxic phenotypes were essentially identical. Based on benchmark thresholds for both morphological and functional cardiotoxicity, in general LEWAFs had lower thresholds for these phenotypes than HEWAFs based on total PAH measures. However, HEWAF and LEWAF toxicity thresholds were more similar when calculated based on estimates of dissolved PAHs only. Differences in thresholds were attributable to the weathering state of the oil samples.


Assuntos
Organismos Aquáticos/química , Cardiotoxicidade/etiologia , Petróleo/efeitos adversos , Hidrocarbonetos Policíclicos Aromáticos/química , Poluentes Químicos da Água/química , Água/química , Animais , Peixes , Poluentes Químicos da Água/análise , Tempo (Meteorologia)
2.
Environ Toxicol Chem ; 37(9): 2372-2379, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29856086

RESUMO

The toxicity of some polycyclic aromatic hydrocarbons (PAHs) increases with ultraviolet (UV) radiation. The intensity of UV radiation varies within aquatic ecosystems, potentially providing reprieves during which tissue repair may occur. Transient/short-term PAH exposure prior to UV exposure may initiate metabolism/clearance, potentially affecting outcomes. Larval Sciaenops ocellatus were exposed to oil and UV radiation, using either variable photoperiods or pre-UV oil exposure durations. Shorter PAH exposures exhibited greater toxicity, as did exposure to shorter photoperiods. Environ Toxicol Chem 2018;37:2372-2379. © 2018 SETAC.


Assuntos
Óleos/toxicidade , Perciformes/fisiologia , Raios Ultravioleta , Animais , Larva/efeitos dos fármacos , Larva/efeitos da radiação , Hidrocarbonetos Policíclicos Aromáticos/análise , Análise de Sobrevida , Poluentes Químicos da Água/toxicidade
3.
Environ Toxicol Chem ; 37(6): 1679-1687, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29473712

RESUMO

Millions of barrels of oil were released into the Gulf of Mexico following the 2010 explosion of the Deepwater Horizon oil rig. Polycyclic aromatic hydrocarbons (PAHs) are toxic components of crude oil, which may become more toxic in the presence of ultraviolet (UV) radiation, a phenomenon known as photo-induced toxicity. The Deepwater Horizon spill impacted offshore and estuarine sites, where biota may be co-exposed to UV and PAHs. Penetration of UV into the water column is affected by site-specific factors. Therefore, measurements and/or estimations of UV are necessary when one is assessing the risk to biota posed by photo-induced toxicity. We describe how estimates of incident UV were determined for the area impacted by the Deepwater Horizon oil spill, using monitoring data from radiometers near the spill, in conjunction with reference spectra characterizing the composition of solar radiation. Furthermore, we provide UV attenuation coefficients for both near- and offshore sites in the Gulf of Mexico. These estimates are specific to the time and location of the spill, and fall within the range of intensities utilized during photo-induced toxicity tests performed in support of the Deepwater Horizon Natural Resource Damage Assessment (NRDA). These data further validate the methodologies and findings of phototoxicity tests included in the Deepwater Horizon NRDA, while underscoring the importance of considering UV exposure when assessing possible risks following oil spills. Environ Toxicol Chem 2018;37:1679-1687. © 2018 SETAC.


Assuntos
Poluição por Petróleo , Raios Ultravioleta , Monitoramento Ambiental/métodos , Golfo do México , Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Água do Mar , Raios Ultravioleta/efeitos adversos , Poluentes Químicos da Água/toxicidade
4.
Mar Pollut Bull ; 109(1): 253-258, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27267114

RESUMO

Crude oil released from the Deepwater Horizon disaster into the Gulf of Mexico posed potential impacts to infaunal invertebrates inhabiting near shore habitats. The effects of sediment-associated weathered slick oil on the amphipod Leptocheirus plumulosus was assessed using 28-d exposures to total PAH sediment concentrations ranging from 0.3 to 24mg/kg (sum of 50 PAHs or tPAH50). Survival and growth rate were significantly decreased in the 2.6, 11.4 and 24.2mg/kg treatments, but only growth in 5.5mg/kg. Offspring production was dramatically decreased but was variable and significantly different only for 24.2mg/kg. The concentrations associated with 20% decreases relative to reference were 1.05 (95% CI=0-2.89) mg/kg tPAH50 for growth rate and 0.632 (95% CI=0.11-2.15) mg/kg tPAH50 for offspring production. The concentrations of PAHs affecting amphipods are within the range of concentrations measured in marsh areas reportedly impacted by DWH oil after its release.


Assuntos
Anfípodes , Poluição por Petróleo , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Sedimentos Geológicos , Petróleo
5.
Environ Sci Technol ; 43(17): 6857-63, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19764260

RESUMO

Sediment toxicity identification and evaluation (TIE) methods are relatively simple laboratory methods designed to identify specific toxicants or classes of toxicants in sediments; however, the question of whether the same toxicant identified in the laboratory is causing effects in the field remains unanswered. The objective of our study was to determine if laboratory TIE methods accurately reflect field effects. A TIE performed on sediments collected from the Elizabeth River (ER) in Virginia identified polycyclic aromatic hydrocarbons (PAHs) as the major toxicants. Several lines of evidence indicated PAHs were the major toxic agents in the field, including elevated PAH concentrations in ER sediments, comet assay results from in situ caged Merceneria merceneria, and chemical analyses of exposed M. merceneria, which indicated high PAH concentrations in the bivalve tissue. Our final evidence was the response from test organisms exposed to ER sediment extracts and then ultraviolet (UV) radiation. UV radiation caused a toxic diagnostic response unique to PAHs. The aggregation of these various lines of evidence supports the conclusion that PAHs were the likely cause of effects in laboratory- and field-exposed organisms, and that laboratory-based TIE findings reflect causes of field impairment


Assuntos
Monitoramento Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Testes de Toxicidade/métodos , Poluentes Químicos da Água/toxicidade , Animais , Monitoramento Ambiental/normas , Laboratórios , Mercenaria/efeitos dos fármacos , Mercenaria/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/farmacocinética , Reprodutibilidade dos Testes , Rios/química , Testes de Toxicidade/normas , Raios Ultravioleta , Virginia , Poluentes Químicos da Água/farmacocinética
6.
Mutat Res ; 542(1-2): 15-22, 2003 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-14644349

RESUMO

Organisms in polluted areas can be exposed to complex mixtures of chemicals; however, exposure to genotoxic contaminants can be particularly devastating. DNA damage can lead to necrosis, apoptosis, or heritable mutations, and therefore has the potential to impact populations as well as individuals. Single cell gel electrophoresis (the comet assay) is a simple and sensitive technique used to examine DNA damage in single cells. The lesion-specific DNA repair enzyme formamidopyrimidine glycoslyase (Fpg) can be used in conjunction with the comet assay to detect 8-oxoguanine and other damaged bases, which are products of oxidative damage. Fpg was used to detect oxidative DNA damage in experiments where isolated oyster (Crassostrea virginica) and clam (Mercenaria mercenaria) hemocytes were exposed to hydrogen peroxide. Standard enzyme buffers used with Fpg and the comet assay produced unacceptably high amounts of DNA damage in the marine bivalve hemocytes used in this study necessitating a modification of existing methods. A sodium chloride based reaction buffer was successfully used. Oxidative DNA damage can be detected in isolated oyster and clam hemocytes using Fpg and the comet assay when the sodium chloride reaction buffer and protocols outlined here are employed. The use of DNA repair enzymes, such as Fpg, in conjunction with the comet assay expands the usefulness and sensitivity of this assay, and provides important insights into the mechanisms of DNA damage.


Assuntos
Dano ao DNA , DNA-Formamidopirimidina Glicosilase/farmacologia , Hemócitos/efeitos dos fármacos , Moluscos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Bivalves/efeitos dos fármacos , Ensaio Cometa , Hemócitos/metabolismo , Peróxido de Hidrogênio/toxicidade , Técnicas In Vitro , Ostreidae/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA