Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Commun ; 15(1): 350, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191490

RESUMO

Understanding metabolic heterogeneity is the key to uncovering the underlying mechanisms of metabolic-related diseases. Current metabolic imaging studies suffer from limitations including low resolution and specificity, and the model systems utilized often lack human relevance. Here, we present a single-cell metabolic imaging platform to enable direct imaging of lipid metabolism with high specificity in various human-derived 2D and 3D culture systems. Through the incorporation of an azide-tagged infrared probe, selective detection of newly synthesized lipids in cells and tissue became possible, while simultaneous fluorescence imaging enabled cell-type identification in complex tissues. In proof-of-concept experiments, newly synthesized lipids were directly visualized in human-relevant model systems among different cell types, mutation status, differentiation stages, and over time. We identified upregulated lipid metabolism in progranulin-knockdown human induced pluripotent stem cells and in their differentiated microglia cells. Furthermore, we observed that neurons in brain organoids exhibited a significantly lower lipid metabolism compared to astrocytes.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Astrócitos , Azidas , Encéfalo/diagnóstico por imagem , Lipídeos
2.
Neurobiol Dis ; 170: 105756, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35584727

RESUMO

BACKGROUND: Few treatments exist for the cognitive symptoms of schizophrenia. Pharmacological agents resulting in glutamate N-methyl-d-aspartate (NMDA) receptor hypofunction, such as MK-801, mimic many of these symptoms and disrupt neural activity. Recent evidence suggests that deep brain stimulation (DBS) of the medial septal nucleus (MSN) can modulate medial prefrontal cortex (mPFC) and hippocampal activity and improve spatial memory. OBJECTIVE: Here, we examine the effects of acute MK-801 administration on oscillatory activity within the septohippocampal circuit and behavior. We also evaluate the potential for MSN stimulation to improve cognitive behavioral measures following MK-801 administration. METHODS: 59 Sprague Dawley male rats received either acute intraperitoneal (IP) saline vehicle injections or MK-801 (0.1 mg/kg). Theta (5-12 Hz), low gamma (30-50 Hz) and high frequency oscillatory (HFO) power were analyzed in the mPFC, MSN, thalamus and hippocampus. Rats underwent MSN theta (7.7 Hz), gamma (100 Hz) or no stimulation during behavioral tasks (Novel object recognition (NOR), elevated plus maze, Barnes maze (BM)). RESULTS: Injection of MK-801 resulted in frequency-specific changes in oscillatory activity, decreasing theta while increasing HFO power. Theta, but not gamma, stimulation enhanced the anxiolytic effects of MK-801 on the elevated plus maze. While MK-801 treated rats exhibited spatial memory deficits on the Barnes maze, those that also received MSN theta, but not gamma, stimulation found the escape hole sooner. CONCLUSIONS: These findings demonstrate that acute MK-801 administration leads to altered neural activity in the septohippocampal circuit and impaired spatial memory. Further, these findings suggest that MSN theta-frequency stimulation improves specific spatial memory deficits and may be a possible treatment for cognitive impairments caused by NMDA hypofunction.


Assuntos
Estimulação Encefálica Profunda , Núcleos Septais , Animais , Estimulação Encefálica Profunda/métodos , Maleato de Dizocilpina/farmacologia , Hipocampo , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/terapia , N-Metilaspartato/farmacologia , Ratos , Ratos Sprague-Dawley , Memória Espacial
3.
Exp Neurol ; 354: 114099, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35490720

RESUMO

BACKGROUND: Early life stress may have profound effects on brain health, yielding both short- and long-term cognitive or psychiatric impairment. Early life Social Instability Stress (SIS) in rodents has been used to model the effects of early chronic human stress. While many studies have assessed acute and short-term responses to this stressor, less attention has been paid to the lasting effects of early life stress in rodents. METHODS: The current study utilized SIS in young mice to assess the impact of early life adversity over the lifespan. Mice were assessed in adulthood between the ages of 18 to 66 weeks for changes in behaviors associated with anxiety, affect, sociability, aggression, motivation, and recognition memory. Additionally, mice were assessed for changes in glucocorticoid level and hippocampal mRNA expression in a subset of genes that display alterations in humans following exposure to stress (CRHR1, CRHR2, FKBP5, SLC6A4). RESULTS: Mice exposed to early SIS showed disrupted memory and increased hippocampal expression of FKBP5, CRHR2 and SLC6A4 mRNA compared to non-stressed mice. Importantly, there was a significant association between increased FKBP5 and CRHR2 with reduced recognition memory. Additionally, mice exposed to SIS showed increased responding on a progressive ratio schedule of reinforcement, indicating that reduction in memory performance was not mediated by decreased effort. CONCLUSIONS: Ecologically-relevant social stress in mice causes long-term decrements in recognition memory, possibly mediated by persistent changes in moderators of the stress cascade. Additionally, animals exposed to early life stress showed increased motivation for reward, which may contribute to a host of hedonic seeking behaviors throughout life. These data suggest that SIS can be used to evaluate therapeutic interventions to attenuate or reverse lasting effects of early life adversity.


Assuntos
Cognição , Hipocampo , Estresse Psicológico , Animais , Camundongos , Expressão Gênica , Hipocampo/metabolismo , RNA Mensageiro/metabolismo , Estresse Psicológico/psicologia , Transtornos da Memória
4.
Exp Brain Res ; 237(7): 1881-1888, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31093716

RESUMO

Numerous mental health disorders are characterized by cognitive impairments that result in poor vocational and social outcomes. Among the cognitive domains commonly affected, working memory deficits have been noted in patients with attention-deficit/hyperactivity disorder (Martinussen et al. in J Am Acad Child Adolesc Psychiatry 44:377-384, 2005), post-traumatic stress disorder (Honzel et al. in Cogn Affect Behav Neurosci 14:792-804, 2014), and consistently with schizophrenia patients (Callicott et al. in Cereb Cortex 10:1078-1092, 2000; Lewis et al. in Front Hum Neurosci 10:85, 2005; Amann et al. in Brain Res Bull 83:147-161, 2010; Limongi et al. in Schizophr Res 197:386-391, 2018). Oscillations in neural activity from electroencephalogram (EEG) recordings are decomposed by frequency, and band-specific decreases in gamma power (> 30 Hz) have been correlated with working memory ability. This study examined within-subject changes in power of frequency-specific bands during sample versus choice trials during a spatial working memory paradigm (T-maze). EEG was recorded using a relatively novel wireless EEG telemetry system fully implanted within the mouse, enabling uninhibited movement during behavioral tasks. No significant differences were found between sample and correct choice phases in the alpha, theta or gamma frequency ranges. Evoked power was significantly higher during the choice phase than the sample phase in the high-beta/low-gamma frequency range. This frequency range has been implicated in the propagation of cortical predictions to lower levels of stimuli encoding in a top-down hierarchical manner. Results suggest there is an increase in brain activity during correct trials when the mouse enters the opposite arm during the choice phase compared to the sample phase, likely due to prediction error resulting from a discrepancy between present and prior experience. Future studies should identify specific cortical networks involved and investigate neural activity at the neuronal level.


Assuntos
Ritmo beta/fisiologia , Ritmo Gama/fisiologia , Aprendizagem em Labirinto/fisiologia , Memória de Curto Prazo/fisiologia , Memória Espacial/fisiologia , Animais , Previsões , Camundongos , Camundongos Endogâmicos C57BL
5.
Artigo em Inglês | MEDLINE | ID: mdl-30826459

RESUMO

Much evidence suggests that hypofunction of the N-methyl-d-aspartate glutamate receptor (NMDAR) may contribute broadly towards a subset of molecular, cognitive and behavioral abnormalities common among psychiatric and developmental diseases. However, little is known about the specific molecular changes that lead to NMDAR dysfunction. As such, personalized approaches to remediating NMDAR dysfunction based on a specific etiology remains a challenge. Sarcoma tyrosine kinase (Src) serves as a hub for multiple signaling mechanisms affecting GluN2 phosphorylation and can be disrupted by convergent alterations of various signaling pathways. We recently showed reduced Src signaling in post mortem tissue from schizophrenia patients, despite increased MK-801 binding and NMDA receptor complex expression in the postsynaptic density (PSD). These data suggest that Src dysregulation may be an important underlying mechanism responsible for reduced glutamate signaling. Despite this evidence for a central role of Src in NMDAR signaling, little is known about how reductions in Src activity might regulate phenotypic changes in cognition and behavior. As such, the current study sought to characterize behavioral and electrophysiological phenotypes in mice heterozygous for the Src Acl gene (Src+/- mice). Src+/- mice demonstrated decreased sociability and working memory relative to Src+/+ (WT) mice while no significant differences were seen on locomotive activity and anxiety-related behavior. In relation to WT mice, Src+/- mice showed decreased mid-latency P20 auditory event related potential (aERP) amplitudes, decreased mismatch negativity (MMN) and decreased evoked gamma power, which was only present in males. These data indicate that Src+/- mice are a promising new model to help understand the pathophysiology of these electrophysiological, behavioral and cognitive changes. As such, we propose that Src+/- mice can be used in the future to evaluate potential therapeutic approaches by targeting increased Src activity as a common final pathway for multiple etiologies of SCZ and other diseases characterized by reduced glutamate function.


Assuntos
Memória de Curto Prazo , Comportamento Social , Quinases da Família src/deficiência , Animais , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Eletroencefalografia , Eletrofisiologia , Potenciais Evocados/fisiologia , Feminino , Masculino , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esquizofrenia/enzimologia , Esquizofrenia/fisiopatologia , Quinases da Família src/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA