RESUMO
BACKGROUND: Atherosclerosis is highly prevalent in people with chronic kidney disease (CKD), including those receiving peritoneal dialysis (PD). Although it is lifesaving, PD induces profound systemic inflammation, which may aggravate atherosclerosis. Therefore, the hypothesis is that this PD-induced inflammation aggravates atherosclerosis via immune cell activation. METHODS AND RESULTS: ApoE-/- mice were subjected to a 5/6 nephrectomy to induce CKD. Three weeks later, mice were fed a high-cholesterol diet. Half of the nephrectomized mice then received daily peritoneal infusions of 3.86% Physioneal for 67 further days (CKD+PD) until the end of the experiment, and were compared with mice without CKD. Sham operated and PD-only mice were additional controls. CKD+PD mice displayed more severe atherosclerotic disease than control mice. Plaque area increased, and plaques were more advanced with a vulnerable phenotype typified by decreased collagen content and decreased fibrous cap thickness. Increased CD3+ T-cell numbers were present in plaques and perivascular adipose tissue of CKD and CKD+PD mice. Plaques of CKD+PD mice contained more iNOS+ immune cells. Spleens of CKD+PD mice showed more CD4+ central memory, terminally differentiated type 1 T-helper (Th1), Th17, and CX3C motif chemokine receptor 1+ (CX3CR1) CD4+ T-cells with less regulatory and effector T-cells. CONCLUSIONS: PD-fluid exposure in uremic mice potentiates systemic and vascular T-cell-driven inflammation and aggravates atherosclerosis. PD polarized CD4+ T-cells toward an inflammatory Th1/Th17 phenotype, and increased CX3CR1+ CD4+ T-cells, which are associated with vascular homing in CKD-associated atherosclerosis. Targeting CD4+ T-cell activation and CX3CR1+ polarization has the potential to attenuate atherosclerosis in PD patients.
Assuntos
Aterosclerose , Modelos Animais de Doenças , Diálise Peritoneal , Insuficiência Renal Crônica , Uremia , Animais , Aterosclerose/patologia , Aterosclerose/etiologia , Aterosclerose/imunologia , Aterosclerose/metabolismo , Aterosclerose/genética , Uremia/imunologia , Uremia/metabolismo , Diálise Peritoneal/efeitos adversos , Insuficiência Renal Crônica/imunologia , Insuficiência Renal Crônica/metabolismo , Camundongos Knockout para ApoE , Camundongos , Placa Aterosclerótica , Masculino , Camundongos Endogâmicos C57BL , Apolipoproteínas E/genética , Apolipoproteínas E/deficiência , NefrectomiaRESUMO
Over the past years, insights in the cancer neuroscience field increased rapidly, and a potential role for neurons in colorectal carcinogenesis has been recognized. However, knowledge on the neuronal distribution, subtypes, origin, and associations with clinicopathological characteristics in human studies is sparse. In this study, colorectal tumor tissues from the Netherlands Cohort Study on diet and cancer (n = 490) and an in-cohort validation population (n = 529) were immunohistochemically stained for the pan-neuronal markers neurofilament (NF) and protein gene product 9.5 (PGP9.5) to study the association between neuronal marker expression and clinicopathological characteristics. In addition, tumor and healthy colon tissues were stained for neuronal subtype markers, and their immunoreactivity in colorectal cancer (CRC) stroma was analyzed. NF-positive and PGP9.5-positive nerve fibers were found within the tumor stroma and mostly characterized by the neuronal subtype markers vasoactive intestinal peptide and neuronal nitric oxide synthase, suggesting that inhibitory neurons are the most prominent neuronal subtype in CRC. NF and PGP9.5 protein expression were not consistently associated with tumor stage, sublocation, differentiation grade, and median survival. NF immunoreactivity was associated with a worse CRC-specific survival in the study cohort (P = .025) independent of other prognostic factors (hazard ratio, 2.31; 95% CI, 1.33-4.03; P = .003), but these results were not observed in the in-cohort validation group. PGP9.5, in contrast, was associated with a worse CRC-specific survival in the in-cohort validation (P = .046) but not in the study population. This effect disappeared in multivariate analyses (hazard ratio, 0.81; 95% CI, 0.50-1.32; P = .393), indicating that this effect was dependent on other prognostic factors. This study demonstrates that the tumor stroma of CRC patients mainly harbors inhibitory neurons and that NF as a single marker is significantly associated with a poorer CRC-specific survival in the study cohort but necessitates future validation.
Assuntos
Biomarcadores Tumorais , Neoplasias Colorretais , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Biomarcadores Tumorais/análise , Neurônios/patologia , Neurônios/metabolismo , Ubiquitina Tiolesterase/análise , Ubiquitina Tiolesterase/metabolismo , Imuno-Histoquímica , Proteínas de Neurofilamentos/análise , Proteínas de Neurofilamentos/metabolismo , Prognóstico , Estimativa de Kaplan-Meier , Idoso de 80 Anos ou mais , Países Baixos , AdultoRESUMO
Natural killer (NK) cells eliminate infected or cancer cells via their cytotoxic capacity. NKG2A is an inhibitory receptor on NK cells and cancer cells often overexpress its ligand HLA-E to evade NK cell surveillance. Given the successes of immune checkpoint blockade in cancer therapy, NKG2A is an interesting novel target. However, anti-NKG2A antibodies have shown limited clinical response. In the pursuit of enhancing NK cell-mediated anti-tumor responses, we devised a Cas9-based strategy to delete KLRC1, encoding NKG2A, in human primary NK cells. Our approach involved electroporation of KLRC1-targeting Cas9 ribonucleoprotein resulting in effective ablation of NKG2A expression. Compared with anti-NKG2A antibody blockade, NKG2AKO NK cells exhibited enhanced activation, reduced suppressive signaling, and elevated expression of key transcription factors. NKG2AKO NK cells overcame inhibition from HLA-E, significantly boosting NK cell activity against solid and hematologic cancer cells. We validated this efficacy across multiple cell lines, a xenograft mouse model, and primary human leukemic cells. Combining NKG2A knockout with antibody coating of tumor cells further enhanced cytotoxicity through ADCC. Thus, we provide a comprehensive comparison of inhibition of the NKG2A pathway using genetic ablation and antibodies and provide novel insight in the observed differences in molecular mechanisms, which can be translated to enhance adoptive NK cell immunotherapy.
Assuntos
Células Matadoras Naturais , Subfamília C de Receptores Semelhantes a Lectina de Células NK , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Antígenos HLA-E , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/genética , Anticorpos Monoclonais/farmacologia , Sistemas CRISPR-Cas , Deleção de Genes , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Citotoxicidade ImunológicaRESUMO
BACKGROUND: The metabolic alterations occurring within the arterial architecture during atherosclerosis development remain poorly understood, let alone those particular to each arterial tunica. We aimed first to identify, in a spatially resolved manner, the specific metabolic changes in plaque, media, adventitia, and cardiac tissue between control and atherosclerotic murine aortas. Second, we assessed their translatability to human tissue and plasma for cardiovascular risk estimation. METHODS: In this observational study, mass spectrometry imaging (MSI) was applied to identify region-specific metabolic differences between atherosclerotic (n=11) and control (n=11) aortas from low-density lipoprotein receptor-deficient mice, via histology-guided virtual microdissection. Early and advanced plaques were compared within the same atherosclerotic animals. Progression metabolites were further analyzed by MSI in 9 human atherosclerotic carotids and by targeted mass spectrometry in human plasma from subjects with elective coronary artery bypass grafting (cardiovascular risk group, n=27) and a control group (n=27). RESULTS: MSI identified 362 local metabolic alterations in atherosclerotic mice (log2 fold-change ≥1.5; P≤0.05). The lipid composition of cardiac tissue is altered during atherosclerosis development and presents a generalized accumulation of glycerophospholipids, except for lysolipids. Lysolipids (among other glycerophospholipids) were found at elevated levels in all 3 arterial layers of atherosclerotic aortas. LPC(18:0) (lysophosphatidylcholine; P=0.024) and LPA(18:1) (lysophosphatidic acid; P=0.025) were found to be significantly elevated in advanced plaques as compared with mouse-matched early plaques. Higher levels of both lipid species were also observed in fibrosis-rich areas of advanced- versus early-stage human samples. They were found to be significantly reduced in human plasma from subjects with elective coronary artery bypass grafting (P<0.001 and P=0.031, respectively), with LPC(18:0) showing significant association with cardiovascular risk (odds ratio, 0.479 [95% CI, 0.225-0.883]; P=0.032) and diagnostic potential (area under the curve, 0.778 [95% CI, 0.638-0.917]). CONCLUSIONS: An altered phospholipid metabolism occurs in atherosclerosis, affecting both the aorta and the adjacent heart tissue. Plaque-progression lipids LPC(18:0) and LPA(18:1), as identified by MSI on tissue, reflect cardiovascular risk in human plasma.
Assuntos
Doenças da Aorta , Aterosclerose , Doenças Cardiovasculares , Placa Aterosclerótica , Humanos , Animais , Camundongos , Placa Aterosclerótica/metabolismo , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/metabolismo , Fatores de Risco , Aterosclerose/diagnóstico , Aterosclerose/metabolismo , Aorta/diagnóstico por imagem , Aorta/metabolismo , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Glicerofosfolipídeos/metabolismo , Fatores de Risco de Doenças CardíacasRESUMO
Extracellular histones have been shown to act as DAMPs in a variety of inflammatory diseases. Moreover, they have the ability to induce cell death. In this study, we show that M6229, a low-anticoagulant fraction of unfractionated heparin (UFH), rescues rats that were challenged by continuous infusion of calf thymus histones at a rate of 25 mg histones/kg/h. Histone infusion by itself induced hepatic and homeostatic dysfunction characterized by elevated activity of hepatic enzymes (ASAT and ALAT) and serum lactate levels as well as by a renal dysfunction, which contributed to the significantly increased mortality rate. M6229 was able to restore normal levels of both hepatic and renal parameters at 3 and 9 mg M6229/kg/h and prevented mortality of the animals. We conclude that M6229 is a promising therapeutic agent to treat histone-mediated disease.
Assuntos
Injúria Renal Aguda , Doença Hepática Crônica Induzida por Substâncias e Drogas , Ratos , Animais , Histonas/metabolismo , Heparina/farmacologia , Anticoagulantes/farmacologia , Rim/metabolismo , Injúria Renal Aguda/tratamento farmacológicoRESUMO
The enteric nervous system (ENS) is a large and complex part of the peripheral nervous system, and it is vital for gut homeostasis. To study the ENS, different hyper- and hypo-innervated model systems have been developed. The NSE-Noggin mouse model was described as one of the few models with a higher enteric neuronal density in the colon. However, in our hands NSE-Noggin mice did not present with a hyperganglionic phenotype. NSE-Noggin mice were phenotyped based on fur appearance, genotyped and DNA sequenced to demonstrate transgene and intact NSE-Noggin-IRES-EGFP construct presence, and RNA expression of Noggin was shown to be upregulated. Positive EGFP staining in the plexus of NSE-Noggin mice also confirmed Noggin protein expression. Myenteric plexus preparations of the colon were examined to quantify both the overall density of enteric neurons and the proportions of enteric neurons expressing specific subtype markers. The total number of enteric neurons in the colonic myenteric plexus of transgenic mice did not differ significantly from wild types, nor did the proportion of calbindin, calretinin, or serotonin immunoreactive myenteric neurons. Possible reasons as to why the hyperinnervated phenotype could not be observed in contrast with original studies using this mouse model are discussed, including study design, influence of microbiota, and other environmental variables.
Assuntos
Sistema Nervoso Entérico , Neurônios , Camundongos , Animais , Neurônios/metabolismo , Sistema Nervoso Entérico/metabolismo , Proteínas de Transporte/metabolismo , Plexo Mientérico , Camundongos Transgênicos , ColoRESUMO
Local intraperitoneal drug administration is considered a challenging drug delivery route. The therapeutic efficiency is low, mainly due to rapid clearance of drugs. To increase the intraperitoneal retention time of specific drugs, a pH-sensitive supramolecular hydrogel that can act as a drug delivery vehicle is developed. To establish the optimal formulation of the hydrogel and to study its feasibility, safety, and tissue compatibility, in vitro, postmortem, and in vivo experiments are performed. In vitro tests reveal that a hydrogelator formulation with pH ≥ 9 results in a constant viscosity of 0.1 Pa·s. After administration postmortem, the hydrogel covers the parietal and visceral peritoneum with a thin, soft layer. In the subsequent in vivo experiments, 14 healthy rats are subjected to intraperitoneal injection with the hydrogel. Fourteen and 28 days after implantation, the animals are euthanized. Intraperitoneal exposure to the hydrogel is not resulted in significant weight loss or discomfort. Moreover, no macroscopic adverse effects or signs of organ damage are detected. In several intra-abdominal tissues, vacuolated macrophages are found indicating a physiological degradation of the synthetic hydrogel. This study demonstrates that the supramolecular hydrogel is safe for intraperitoneal application and that the hydrogel shows good tissue compatibility in rats.
Assuntos
Sistemas de Liberação de Medicamentos , Hidrogéis , Ratos , Animais , Hidrogéis/farmacologia , Hidrogéis/química , Injeções Intraperitoneais , InjeçõesRESUMO
BACKGROUND: Understanding the early processes underlying intestinal anastomotic healing is crucial to comprehend the pathophysiology of anastomotic leakage. The aim of this study was to assess normal intestinal anastomotic healing and disturbed healing in rats to investigate morphological, cellular and intrinsic molecular changes in the anastomotic tissue. METHOD: Anastomoses were created in two groups of Wistar rats, using four sutures or 12 sutures to mimic anastomotic leakage and anastomotic healing respectively. At 6, 12, 24 hours and 2, 3, 5 and 7 days, anastomotic tissue was assessed macroscopically using the anastomotic complication score and histologically using the modified Ehrlich-Hunt score. Transcriptome analysis was performed to assess differences between anastomotic leakage and anastomotic healing at the first three time points to find affected genes and biological processes. RESULTS: Ninety-eight rats were operated on (49 animals in the anastomotic leakage and 49 in the anastomotic healing group) and seven rats analysed at each time point. None of the animals with 12 sutures developed anastomotic leakage macroscopically, whereas 35 of the 49 animals with four sutures developed anastomotic leakage. Histological analysis showed increasing influx of inflammatory cells up to 3 days in anastomotic healing and up to 7 days in anastomotic leakage, and this increase was significantly higher in anastomotic leakage at 5 (P = 0.041) and 7 days (P = 0.003). Transcriptome analyses revealed large differences between anastomotic leakage and anastomotic healing at 6 and 24 hours, mainly driven by an overall downregulation of genes in anastomotic leakage. CONCLUSION: Transcriptomic analyses revealed large differences between normal and disturbed healing at 6 hours after surgery, which might eventually serve as early-onset biomarkers for anastomotic leakage.
Assuntos
Fístula Anastomótica , Transcriptoma , Ratos , Humanos , Animais , Fístula Anastomótica/etiologia , Ratos Wistar , Anastomose Cirúrgica/efeitos adversos , Cicatrização/genéticaRESUMO
The prognosis of colorectal cancer patients with peritoneal metastases is very poor. Intraperitoneal drug delivery systems, like supramolecular hydrogels, are being developed to improve local delivery and intraperitoneal residence time of a cytostatic such as mitomycin C (MMC). In this study, we evaluate the effect of intraperitoneal hydrogel administration on anastomotic healing. Forty-two healthy Wistar rats received a colonic end-to-end anastomosis, after which 6 animals received an intraperitoneal injection with saline, 18 with unloaded hydrogel and 18 with MMC-loaded hydrogel. After 7 days, animals were euthanized, and the anastomotic adhesion and leakage score were measured as primary outcome. Secondary outcomes were bursting pressure, histological anastomosis evaluation and body weight changes. Twenty-two rats completed the follow-up period (saline: n = 6, unloaded hydrogel: n = 10, MMC-loaded hydrogel: n = 6) and were included in the analysis. A trend towards significance was found for anastomotic leakage score between the rats receiving saline and unloaded hydrogel after multiple-comparison correction (p = 0.020, α = 0.0167). No significant differences were found for all other outcomes. The main reason for drop-out in this study was intestinal blood loss. Although the preliminary results suggest that MMC-loaded or unloaded hydrogel does not influence anastomotic healing, the intestinal blood loss observed in a considerable number of animals receiving unloaded and MMC-loaded hydrogel implies that the injection of the hydrogel under the studied conditions is not safe in the current rodent model and warrants further optimalisation of the hydrogel.
RESUMO
Background and purpose: Carotid atherosclerotic plaques with a large lipid-rich necrotic core (LRNC), intraplaque hemorrhage (IPH), and a thin or ruptured fibrous cap are associated with increased stroke risk. Multi-sequence MRI can be used to quantify carotid atherosclerotic plaque composition. Yet, its clinical implementation is hampered by long scan times and image misregistration. Multi-contrast atherosclerosis characterization (MATCH) overcomes these limitations. This study aims to compare the quantification of plaque composition with MATCH and multi-sequence MRI. Methods: MATCH and multi-sequence MRI were used to image 54 carotid arteries of 27 symptomatic patients with ≥2â mm carotid plaque on a 3.0â T MRI scanner. The following sequence parameters for MATCH were used: repetition time/echo time (TR/TE), 10.1/4.35 ms; field of view, 160 mm × 160 mm × 2â mm; matrix size, 256 × 256; acquired in-plane resolution, 0.63â mm2× 0.63â mm2; number of slices, 18; and flip angles, 8°, 5°, and 10°. Multi-sequence MRI (black-blood pre- and post-contrast T1-weighted, time of flight, and magnetization prepared rapid acquisition gradient echo; acquired in-plane resolution: 0.63â mm2 × 0.63â mm2) was acquired according to consensus recommendations, and image quality was scored (5-point scale). The interobserver agreement in plaque composition quantification was assessed by the intraclass correlation coefficient (ICC). The sensitivity and specificity of MATCH in identifying plaque composition were calculated using multi-sequence MRI as a reference standard. Results: A significantly lower image quality of MATCH compared to that of multi-sequence MRI was observed (p < 0.05). The scan time for MATCH was shorter (7 vs. 40â min). Interobserver agreement in quantifying plaque composition on MATCH images was good to excellent (ICC ≥ 0.77) except for the total volume of calcifications and fibrous tissue that showed moderate agreement (ICC ≥ 0.61). The sensitivity and specificity of detecting plaque components on MATCH were ≥89% and ≥91% for IPH, ≥81% and 85% for LRNC, and ≥71% and ≥32% for calcifications, respectively. Overall, good-to-excellent agreement (ICC ≥ 0.76) of quantifying plaque components on MATCH with multi-sequence MRI as the reference standard was observed except for calcifications (ICC = 0.37-0.38) and fibrous tissue (ICC = 0.59-0.70). Discussion and conclusion: MATCH images can be used to quantify plaque components such as LRNC and IPH but not for calcifications. Although MATCH images showed a lower mean image quality score, short scan time and inherent co-registration are significant advantages.
RESUMO
Fibrosis of the filtering bleb is one of the main causes of failure after bleb-forming glaucoma surgery. Intraoperative application of mitomycin C (MMC) is the current gold standard to reduce the fibrotic response. However, MMC is cytotoxic and one-time application is often insufficient. A sustained-release drug delivery system (DDS), loaded with MMC, may be less cytotoxic and equally or more effective. Two degradable (polycaprolactone (PCL) and polylactic-co-glycolic acid (PLGA)) MMC-loaded DDSs are developed. Release kinetics are first assessed in vitro followed by rabbit implants in conjunction with the PRESERFLO MicroShunt. As a control, the MicroShunt is implanted with adjunctive use of a MMC solution. Rabbits are euthanized at postoperative day (POD) 28 and 90. The PLGA and PCL DDSs release (on average) 99% and 75% of MMC, respectively. All groups show functioning blebs until POD 90. Rabbits implanted with a DDS show more inflammation with avascular thin-walled blebs when compared to the control. However, collagen is more loosely arranged. The PLGA DDS shows less inflammation, less foreign body response (FBR), and more complete degradation at POD 90 when compared to the PCL DDS. Further optimization with regard to dosage is required to reduce side effects to the conjunctiva.
RESUMO
Patients with peritoneal metastases (PM) of colorectal cancer have a very poor outcome. Intraperitoneal delivery of chemotherapy is the preferred route for PM treatment. The main limitation of the treatment options is the short residence time of the cytostatic, with subsequent short exposure of the cancer cells. To address this, a supramolecular hydrogel has been developed that allows both local and slow release of its encapsulated drug, mitomycin C (MMC) or cholesterol-conjugated MMC (cMMC), respectively. This experimental study investigates if drug delivery using this hydrogel improves the therapeutic efficacy against PM. PM was induced in WAG/Rij rats (n = 72) by intraperitoneally injecting syngeneic colon carcinoma cells (CC531) expressing luciferase. After seven days, animals received a single intraperitoneal injection with saline (n = 8), unloaded hydrogel (n = 12), free MMC (n = 13), free cMMC (n = 13), MMC-loaded hydrogel (n = 13), or cMMC-loaded hydrogel (n = 13). Primary outcome was overall survival with a maximum follow-up of 120 days. Intraperitoneal tumor development was non-invasive monitored via bioluminescence imaging. Sixty-one rats successfully underwent all study procedures and were included to assess therapeutic efficacy. After 120 days, the overall survival in the MMC-loaded hydrogel and free MMC group was 78% and 38%, respectively. A trend toward significance was found when comparing the survival curves of the MMC-loaded hydrogel and free MMC (p = 0.087). No survival benefit was found for the cMMC-loaded hydrogel compared to free cMMC. Treating PM with our MMC-loaded hydrogel, exhibiting prolonged MMC exposure, seems effective in improving survival compared to treatment with free MMC.
Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Citostáticos , Neoplasias Peritoneais , Ratos , Animais , Citostáticos/uso terapêutico , Neoplasias Peritoneais/secundário , Hidrogéis/uso terapêutico , Roedores , Mitomicina , Neoplasias do Colo/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológicoRESUMO
Lowering intraocular pressure (IOP) by placement of a glaucoma shunt is an effective treatment for glaucoma. However, fibrosis of the outflow site can hamper surgical outcome. In this study, the antifibrotic effect of adding an endplate (with or without microstructured surface topographies) to a microshunt made of poly(styrene-block-isobutylene-block-styrene) is investigated. New Zealand white rabbits are implanted with a control implant (without endplate) and modified implants. Afterward, bleb morphology and IOP is recorded for 30 days. After killing of the animals, eyes are collected for histology, Addition of an endplate extended bleb survival, Topography-990 has the longest recorded bleb-survival time. Histology reveals that the addition of an endplate increases the presence of myofibroblasts, macrophages, polymorphonuclear cells, and foreign body giant cells compared to the control. However, an increased capsule thickness and inflammatory response are observed in the groups with surface topographies, The addition of an endplate results in prolonged bleb survival, demonstrating that engineering of the shape of glaucoma implants could prolong bleb functionality. Future research should further elaborate the effect of surface topographies on long-term bleb survival, since an increased presence of pro-fibrotic cells and increased capsule thickness are observed compared to the control.
Assuntos
Implantes para Drenagem de Glaucoma , Glaucoma , Animais , Coelhos , Implantes para Drenagem de Glaucoma/efeitos adversos , Glaucoma/cirurgia , Pressão Intraocular , Olho , Fibrose , EstirenosRESUMO
Introduction: The transmembrane protease A Disintegrin And Metalloproteinase 10 (ADAM10) displays a "pattern regulatory function," by cleaving a range of membrane-bound proteins. In endothelium, it regulates barrier function, leukocyte recruitment and angiogenesis. Previously, we showed that ADAM10 is expressed in human atherosclerotic plaques and associated with neovascularization. In this study, we aimed to determine the causal relevance of endothelial ADAM10 in murine atherosclerosis development in vivo. Methods and results: Endothelial Adam10 deficiency (Adam10 ecko ) in Western-type diet (WTD) fed mice rendered atherogenic by adeno-associated virus-mediated PCSK9 overexpression showed markedly increased atherosclerotic lesion formation. Additionally, Adam10 deficiency was associated with an increased necrotic core and concomitant reduction in plaque macrophage content. Strikingly, while intraplaque hemorrhage and neovascularization are rarely observed in aortic roots of atherosclerotic mice after 12 weeks of WTD feeding, a majority of plaques in both brachiocephalic artery and aortic root of Adam10ecko mice contained these features, suggestive of major plaque destabilization. In vitro, ADAM10 knockdown in human coronary artery endothelial cells (HCAECs) blunted the shedding of lectin-like oxidized LDL (oxLDL) receptor-1 (LOX-1) and increased endothelial inflammatory responses to oxLDL as witnessed by upregulated ICAM-1, VCAM-1, CCL5, and CXCL1 expression (which was diminished when LOX-1 was silenced) as well as activation of pro-inflammatory signaling pathways. LOX-1 shedding appeared also reduced in vivo, as soluble LOX-1 levels in plasma of Adam10ecko mice was significantly reduced compared to wildtypes. Discussion: Collectively, these results demonstrate that endothelial ADAM10 is atheroprotective, most likely by limiting oxLDL-induced inflammation besides its known role in pathological neovascularization. Our findings create novel opportunities to develop therapeutics targeting atherosclerotic plaque progression and stability, but at the same time warrant caution when considering to use ADAM10 inhibitors for therapy in other diseases.
RESUMO
AIMS: Specific fibroblast markers and in-depth heterogeneity analysis are currently lacking, hindering functional studies in cardiovascular diseases (CVDs). Here, we established cell-type markers and heterogeneity in murine and human arteries and studied the adventitial fibroblast response to CVD and its risk factors hypercholesterolaemia and ageing. METHODS AND RESULTS: Murine aorta single-cell RNA-sequencing analysis of adventitial mesenchymal cells identified fibroblast-specific markers. Immunohistochemistry and flow cytometry validated platelet-derived growth factor receptor alpha (PDGFRA) and dipeptidase 1 (DPEP1) across human and murine aorta, carotid, and femoral arteries, whereas traditional markers such as the cluster of differentiation (CD)90 and vimentin also marked transgelin+ vascular smooth muscle cells. Next, pseudotime analysis showed multiple fibroblast clusters differentiating along trajectories. Three trajectories, marked by CD55 (Cd55+), Cxcl chemokine 14 (Cxcl14+), and lysyl oxidase (Lox+), were reproduced in an independent RNA-seq dataset. Gene ontology (GO) analysis showed divergent functional profiles of the three trajectories, related to vascular development, antigen presentation, and/or collagen fibril organization, respectively. Trajectory-specific genes included significantly more genes with known genome-wide associations (GWAS) to CVD than expected by chance, implying a role in CVD. Indeed, differential regulation of fibroblast clusters by CVD risk factors was shown in the adventitia of aged C57BL/6J mice, and mildly hypercholesterolaemic LDLR KO mice on chow by flow cytometry. The expansion of collagen-related CXCL14+ and LOX+ fibroblasts in aged and hypercholesterolaemic aortic adventitia, respectively, coincided with increased adventitial collagen. Immunohistochemistry, bulk, and single-cell transcriptomics of human carotid and aorta specimens emphasized translational value as CD55+, CXCL14+ and LOX+ fibroblasts were observed in healthy and atherosclerotic specimens. Also, trajectory-specific gene sets are differentially correlated with human atherosclerotic plaque traits. CONCLUSION: We provide two adventitial fibroblast-specific markers, PDGFRA and DPEP1, and demonstrate fibroblast heterogeneity in health and CVD in humans and mice. Biological relevance is evident from the regulation of fibroblast clusters by age and hypercholesterolaemia in vivo, associations with human atherosclerotic plaque traits, and enrichment of genes with a GWAS for CVD.
Assuntos
Aterosclerose , Hipercolesterolemia , Placa Aterosclerótica , Humanos , Camundongos , Animais , Idoso , Placa Aterosclerótica/metabolismo , Hipercolesterolemia/metabolismo , Transcriptoma , Camundongos Endogâmicos C57BL , Aterosclerose/metabolismo , Colágeno/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Envelhecimento/genética , Fibroblastos/metabolismo , Colesterol/metabolismoRESUMO
The co-stimulatory CD40-CD40L dyad plays an important role in chronic inflammatory diseases associated with aging. Although CD40 is mainly expressed by immune cells, CD40 is also present on adipocytes. We aimed to delineate the role of adipocyte CD40 in the aging hematopoietic system and evaluated the effects of adipocyte CD40 deficiency on cardiometabolic diseases. Adult adipocyte CD40-deficient mice (AdiCD40KO) mice had a decrease in bone marrow hematopoietic stem cells (Lin-Sca+cKit+, LSK) and common lymphoid progenitors, which was associated with increased bone marrow adiposity and T-cell activation, along with elevated plasma corticosterone levels, a phenotype that became more pronounced with age. Atherosclerotic AdiCD40koApoE-/- (CD40AKO) mice also displayed changes in the LSK population, showing increased myeloid and lymphoid multipotent progenitors, and augmented corticosterone levels. Increased T-cell activation could be observed in bone marrow, spleen, and adipose tissue, while the numbers of B cells were decreased. Although atherosclerosis was reduced in CD40AKO mice, plaques contained more activated T cells and larger necrotic cores. Analysis of peripheral adipose tissue in a diet-induced model of obesity revealed that obese AdiCD40KO mice had increased T-cell activation in adipose tissue and lymphoid organs, but decreased weight gain and improved insulin sensitivity, along with increased fat oxidation. In conclusion, adipocyte CD40 plays an important role in maintaining immune cell homeostasis in bone marrow during aging and chronic inflammatory diseases, particularly of the lymphoid populations. Although adipocyte CD40 deficiency reduces atherosclerosis burden and ameliorates diet-induced obesity, the accompanying T-cell activation may eventually aggravate cardiometabolic diseases.
Assuntos
Aterosclerose , Doenças Cardiovasculares , Animais , Camundongos , Corticosterona/farmacologia , Adipócitos , Obesidade , Inflamação , Antígenos CD40/genética , Ligante de CD40 , Hematopoese , Camundongos Endogâmicos C57BLRESUMO
Cells often adopt different phenotypes, dictated by tissue-specific or local signals such as cell-cell and cell-matrix contacts or molecular micro-environment. This holds in extremis for macrophages with their high phenotypic plasticity. Their broad range of functions, some even opposing, reflects their heterogeneity, and a multitude of subsets has been described in different tissues and diseases. Such micro-environmental imprint cannot be adequately studied by single-cell applications, as cells are detached from their context, while histology-based assessment lacks the phenotypic depth due to limitations in marker combination. Here, we present a novel, integrative approach in which 15-color multispectral imaging allows comprehensive cell classification based on multi-marker expression patterns, followed by downstream analysis pipelines to link their phenotypes to contextual, micro-environmental cues, such as their cellular ("community") and metabolic ("local lipidome") niches in complex tissue. The power of this approach is illustrated for myeloid subsets and associated lipid signatures in murine atherosclerotic plaque.
Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Aterosclerose/metabolismo , Biomarcadores/metabolismo , Macrófagos/metabolismo , Espectrometria de Massas , Camundongos , FenótipoRESUMO
Chaperone-mediated autophagy (CMA) contributes to regulation of energy homeostasis by timely degradation of enzymes involved in glucose and lipid metabolism. Here, we report reduced CMA activity in vascular smooth muscle cells and macrophages in murine and human arteries in response to atherosclerotic challenges. We show that in vivo genetic blockage of CMA worsens atherosclerotic pathology through both systemic and cell-autonomous changes in vascular smooth muscle cells and macrophages, the two main cell types involved in atherogenesis. CMA deficiency promotes dedifferentiation of vascular smooth muscle cells and a proinflammatory state in macrophages. Conversely, a genetic mouse model with up-regulated CMA shows lower vulnerability to proatherosclerotic challenges. We propose that CMA could be an attractive therapeutic target against cardiovascular diseases.
Assuntos
Aterosclerose , Autofagia Mediada por Chaperonas , Animais , Aterosclerose/genética , Aterosclerose/patologia , Autofagia Mediada por Chaperonas/genética , Modelos Animais de Doenças , Lisossomos/metabolismo , CamundongosRESUMO
AIMS: Atherosclerotic plaque hypoxia is detrimental for macrophage function. Prolyl hydroxylases (PHDs) initiate cellular hypoxic responses, possibly influencing macrophage function in plaque hypoxia. Thus, we aimed to elucidate the role of myeloid PHDs in atherosclerosis. METHODS AND RESULTS: Myeloid-specific PHD knockout (PHDko) mice were obtained via bone marrow transplantation (PHD1ko, PHD3ko) or conditional knockdown through lysozyme M-driven Cre recombinase (PHD2cko). Mice were fed high cholesterol diet for 6-12 weeks to induce atherosclerosis. Aortic root plaque size was significantly augmented 2.6-fold in PHD2cko, and 1.4-fold in PHD3ko compared to controls but was unchanged in PHD1ko mice. Macrophage apoptosis was promoted in PHD2cko and PHD3ko mice in vitro and in vivo, via the hypoxia-inducible factor (HIF) 1α/BNIP3 axis. Bulk and single-cell RNA data of PHD2cko bone marrow-derived macrophages (BMDMs) and plaque macrophages, respectively, showed enhanced HIF1α/BNIP3 signalling, which was validated in vitro by siRNA silencing. Human plaque BNIP3 mRNA was positively associated with plaque necrotic core size, suggesting similar pro-apoptotic effects in human. Furthermore, PHD2cko plaques displayed enhanced fibrosis, while macrophage collagen breakdown by matrix metalloproteinases, collagen production, and proliferation were unaltered. Instead, PHD2cko BMDMs enhanced fibroblast collagen secretion in a paracrine manner. In silico analysis of macrophage-fibroblast communication predicted SPP1 (osteopontin) signalling as regulator, which was corroborated by enhanced plaque SPP1 protein in vivo. Increased SPP1 mRNA expression upon PHD2cko was preferentially observed in foamy plaque macrophages expressing 'triggering receptor expressed on myeloid cells-2' (TREM2hi) evidenced by single-cell RNA, but not in neutrophils. This confirmed enhanced fibrotic signalling by PHD2cko macrophages to fibroblasts, in vitro as well as in vivo. CONCLUSION: Myeloid PHD2cko and PHD3ko enhanced atherosclerotic plaque growth and macrophage apoptosis, while PHD2cko macrophages further activated collagen secretion by fibroblasts in vitro, likely via paracrine SPP1 signalling through TREM2hi macrophages.
Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Apoptose , Aterosclerose/metabolismo , Colágeno/metabolismo , Fibrose , Hipóxia/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica/metabolismo , RNA/metabolismo , RNA Mensageiro/metabolismoRESUMO
BACKGROUND: Failure of fascial healing in the abdominal wall can result in incisional hernia, which is one of the most common complications after laparotomy. Understanding the molecular healing process of abdominal fascia may provide lipid markers of incisional hernia or therapeutic targets that allow prevention or treatment of incisional hernias. PURPOSE: This study aims to investigate temporal and in situ changes of lipids during the normal healing process of abdominal fascia in the first postoperative week. METHODS: Open hemicolectomy was performed in a total of 35 Wistar rats. The midline fascia was closed identically for all rats using a single continuous suturing technique. These animals were sacrificed with equal numbers (n = 5) at each of 7-time points (6, 12, 24, 48, 72, 120, and 168 h. The local and temporal changes of lipids were examined with mass spectrometry imaging and correlated to histologically scored changes during healing using hematoxylin and eosin staining. RESULTS: Two phosphatidylcholine lipid species (PC O-38:5 and PC 38:4) and one phosphatidylethanolamine lipid (PE O-16:1_20:4) were found to significantly correlate with temporal changes of inflammation. A phosphatidylcholine (PC 32:0) and a monosialodihexosylganglioside (GM3 34:1;2) were found to correlate with fibroblast cell growth. CONCLUSION: Glycerophospholipids and gangliosides are strongly involved in the normal healing process of abdominal fascia and their locally fluctuating concentrations are considered as potential lipid markers and therapeutic targets of fascial healing.