RESUMO
Precise manipulation of flexible surgical tools is crucial in minimally invasive surgical procedures, necessitating a miniature and flexible robotic probe that can precisely direct the surgical instruments. In this work, we developed a polymer-based robotic fiber with a thermal actuation mechanism by local heating along the sides of a single fiber. The fiber robot was fabricated by highly scalable fiber drawing technology using common low-cost materials. This low-profile (below 2 millimeters in diameter) robotic fiber exhibits remarkable motion precision (below 50 micrometers) and repeatability. We developed control algorithms coupling the robot with endoscopic instruments, demonstrating high-resolution in situ molecular and morphological tissue mapping. We assess its practicality and safety during in vivo laparoscopic surgery on a porcine model. High-precision motion of the fiber robot delivered endoscopically facilitates the effective use of cellular-level intraoperative tissue identification and ablation technologies, potentially enabling precise removal of cancer in challenging surgical sites.
Assuntos
Laparoscopia , Procedimentos Cirúrgicos Robóticos , Robótica , Suínos , Animais , Procedimentos Cirúrgicos Robóticos/métodos , Laparoscopia/métodos , Procedimentos Cirúrgicos Minimamente InvasivosRESUMO
Accurate, reliable, and cost-effective immunosensors are clinically important for the early diagnosis and monitoring of progressive diseases, and multiplexed sensing is a promising strategy for the next generation of diagnostics. This strategy allows for the simultaneous detection and quantification of multiple biomarkers with significantly enhanced reproducibility and reliability, whilst requiring smaller sample volumes, fewer materials, and shorter average analysis time for individual biomarkers than individual tests. In this opinionated review, we compare different techniques for the development of multiplexed immunosensors. We review the state-of-the-art approaches in the field of multiplexed immunosensors using electrical, electrochemical, and optical methods. The barriers that prevent translating this sensing strategy into clinics are outlined together with the potential solutions. We also share our vision on how multiplexed immunosensors will continue their evolution in the coming years.