Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
ACS Omega ; 9(14): 15882-15892, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617686

RESUMO

In the present study, ZnO nanoparticles were synthesized by using aqueous extracts of Aerva persica roots. Characterization of as-prepared ZnO nanoparticles was carried out using different techniques, including powder X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and BET surface area analysis. Morphological analysis confirmed the small, aggregated flake-shaped morphology of as-synthesized ZnO nanostructures. The as-prepared ZnO nanoparticles were analyzed for their potential application as anti-inflammatory (using in vivo inhibition of carrageenan induced paw edema) and antioxidant (using in vitro radical scavenging activity) agents. The ZnO nanoparticles were found to have a potent antioxidant and anti-inflammatory activity comparable to that of standard ascorbic acid (antioxidant) and indomethacin (anti-inflammatory drug). Therefore, due to their ecofriendly synthesis, nontoxicity, and biocompatible nature, zinc oxide nanoparticles synthesized successfully from roots extract of the plant Aerva persica with potent efficiencies can be utilized for different biomedical applications.

2.
PeerJ ; 12: e16795, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38313003

RESUMO

This study explores the neuroprotective potential of hibiscetin concerning memory deficits induced by lipopolysaccharide (LPS) injection in rats. The aim of this study is to evaluate the effect of hibiscetin against LPS-injected memory deficits in rats. The behavioral paradigms were conducted to access LPS-induced memory deficits. Various biochemical parameters such as acetyl-cholinesterase activity, choline-acetyltransferase, antioxidant (superoxide dismutase, glutathione transferase, catalase), oxidative stress (malonaldehyde), and nitric oxide levels were examined. Furthermore, neuroinflammatory parameters such as tumor necrosis factor-α, interleukin-1ß (IL-1ß), IL-6, and nuclear factor-kappa B expression and brain-derived neurotrophic factor as well as apoptosis marker i.e., caspase-3 were evaluated. The results demonstrated that the hibiscetin-treated group exhibited significant recovery in LPS-induced memory deficits in rats by using behavioral paradigms, biochemical parameters, antioxidant levels, oxidative stress, neuroinflammatory markers, and apoptosis markers. Recent research suggested that hibiscetin may serve as a promising neuroprotective agent in experimental animals and could offer an alternative in LPS-injected memory deficits in rodent models.


Assuntos
Produtos Biológicos , Transtornos da Memória , NF-kappa B , Animais , Ratos , Antioxidantes/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Caspase 3/metabolismo , Lipopolissacarídeos/toxicidade , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , NF-kappa B/metabolismo , Produtos Biológicos/farmacologia
3.
ACS Omega ; 8(46): 44183-44194, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38027324

RESUMO

Piperine (PPN) is a natural alkaloid derived from black pepper (Piper nigrum L.) and has garnered substantial attention for its potential in breast cancer therapy due to its diverse pharmacological properties. However, its highly lipophilic characteristics and poor dissolution in biological fluids limit its clinical application. Therefore, to overcome this limitation, we formulate and evaluate PPN-encapsulated polycaprolactone (PCL) nanoparticles (PPN-PCL-NPs). The nanoparticles were prepared by a single-step nanoprecipitation method and further optimized by a formulation design approach. The influence of selected independent variables PCL (X1), poloxamer 188 (P-188; X2), and stirring speed (SS; X3) were investigated on the particle size (PS), polydispersity index (PDI), and % encapsulation efficiency (EE). The selected optimized nanoparticles were further assessed for stability, in vitro release, and in vitro antibreast cancer activity in the MCF-7 cancer cell line. The PS, PDI, zeta potential, and % EE of the optimized PPN-PCL-NPs were observed to be 107.61 ± 5.28 nm, 0.136 ± 0.011, -20.42 ± 1.82 mV, and 79.53 ± 5.22%, respectively. The developed PPN-PCL-NPs were stable under different temperature conditions with insignificant changes in their pharmaceutical attributes. The optimized PPN-PCL-NPs showed a burst release for the first 6 h and later showed sustained release for 48 h. The PPN-PCL-NPs exhibit exceptional cytotoxic effects in MCF-7 breast tumor cells in comparison with the native PPN. Thus, the formulation of PPN-loaded PCL-NPs can be a promising approach for better therapeutic efficacy against breast cancer.

4.
Molecules ; 28(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37764280

RESUMO

Green approaches for nanoparticle synthesis have emerged as biocompatible, economical, and environment-friendly alternatives to counteract the menace of microbial drug resistance. Recently, the utilization of honey as a green source to synthesize Fe2O3-NPs has been introduced, but its antibacterial activity against one of the opportunistic MDR pathogens, Klebsiella pneumoniae, has not been explored. Therefore, this study employed Apis mellifera honey as a reducing and capping agent for the synthesis of iron oxide nanoparticles (Fe2O3-NPs). Subsequent to the characterization of nanoparticles, their antibacterial, antioxidant, and anti-inflammatory properties were appraised. In UV-Vis spectroscopic analysis, the absorption band ascribed to the SPR peak was observed at 350 nm. XRD analysis confirmed the crystalline nature of Fe2O3-NPs, and the crystal size was deduced to be 36.2 nm. Elemental analysis by EDX validated the presence of iron coupled with oxygen in the nanoparticle composition. In ICP-MS, the highest concentration was of iron (87.15 ppm), followed by sodium (1.49 ppm) and other trace elements (<1 ppm). VSM analysis revealed weak magnetic properties of Fe2O3-NPs. Morphological properties of Fe2O3-NPs revealed by SEM demonstrated that their average size range was 100-150 nm with a non-uniform spherical shape. The antibacterial activity of Fe2O3-NPs was ascertained against 30 clinical isolates of Klebsiella pneumoniae, with the largest inhibition zone recorded being 10 mm. The MIC value for Fe2O3-NPs was 30 µg/mL. However, when mingled with three selected antibiotics, Fe2O3-NPs did not affect any antibacterial activity. Momentous antioxidant (IC50 = 22 µg/mL) and anti-inflammatory (IC50 = 70 µg/mL) activities of Fe2O3-NPs were discerned in comparison with the standard at various concentrations. Consequently, honey-mediated Fe2O3-NP synthesis may serve as a substitute for orthodox antimicrobial drugs and may be explored for prospective biomedical applications.


Assuntos
Mel , Abelhas , Animais , Antioxidantes/farmacologia , Estudos Prospectivos , Antibacterianos/farmacologia , Ferro , Klebsiella pneumoniae , Nanopartículas Magnéticas de Óxido de Ferro
5.
Cent Nerv Syst Agents Med Chem ; 23(2): 126-136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37608652

RESUMO

BACKGROUND: The primary phytoconstituents reported to have neuroprotective effects are flavonoids and phenolic compounds. Aerva persica roots are reported to be rich in flavonoids and phenolic compounds. Therefore, this study aimed to explore the nootropic potential of Aerva persica roots. OBJECTIVE: The objective of this study was to evaluate the nootropic potential of Aerva persica roots against D-galactose-induced memory impairment. METHODS: In this study, the roots of Aerva persica were extracted with 70% ethanol. The obtained extract was evaluated for total phenolic content using the Folin-Ciocalteu method and total flavonoid content using the aluminium chloride colorimetric assay. Afterward, the acute oral toxicity of the extract was determined following the Organisation for Economic Co-operation and Development (OECD) guideline 423. Additionally, two doses of Aerva persica (100 and 200 mg/kg body weight (BW)) were evaluated for their nootropic potential against D-galactose-induced memory impairment. The nootropic potential of the crude extract was assessed through a behavioural study and brain neurochemical analysis. Behavioural studies involved the evaluation of spatial reference- working memory using the radial arm maze test and the Y-maze test. Neurochemical analysis was performed to determine the brain's acetylcholine, acetylcholinesterase, glutathione (GSH), and malondialdehyde (MDA) levels. RESULTS: The total phenolic content and total flavonoid content were found to be 179.14 ± 2.08 µg GAE/mg and 273.72 ± 3.94 µg QE/mg, respectively. The Aerva persica extract was found to be safe up to 2000 mg/kg BW. Following the safety assessment, the experimental mice received various treatments for 14 days. The behavioural analysis using the radial maze test showed that the extract at both doses significantly improved spatial reference-working memory and reduced the number of total errors compared to disease control groups. Similarly, in the Y-maze test, both doses significantly increased the alteration percentage and the percentage of novel arm entry (both indicative of intact spatial memory) compared to disease control. In neurochemical analysis, Aerva persica at 200 mg/kg significantly normalised the acetylcholine level (p<0.0001) and GSH level (p<0.01) compared to disease control. However, the same effect was not observed with Aerva persica at 100 mg/kg. Additionally, Aerva persica at 200mg/kg BW significantly decreased the acetylcholinesterase level (p<0.0001) and decreased the brain's MDA level (p<0.01) compared to the disease control, whereas the effect of Aerva persica at 100 mg/kg BW in reducing acetylcholinesterase was non-significant. CONCLUSION: Based on the results, it can be concluded that the nootropic potential of Aerva persica was comparable to that of the standard drug, Donepezil, and the effect might be attributed to the higher content of flavonoids and phenolic compounds.


Assuntos
Amaranthaceae , Nootrópicos , Camundongos , Animais , Nootrópicos/farmacologia , Galactose/toxicidade , Acetilcolinesterase , Acetilcolina/efeitos adversos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Glutationa/efeitos adversos , Etanol , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Aprendizagem em Labirinto
6.
Pharmaceutics ; 15(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36839903

RESUMO

Miconazole nitrate (MN) is a poorly water-soluble and antifungal drug used for fungal infections. The present research work was designed to develop topical MN-loaded bilosomes (BSs) for the improvement of therapeutic efficacy. MZBSs were prepared by using the thin-film hydration method and further optimized by using the Box-Behnken statistical design (BBD). The optimized miconazole bilosome (MZBSo) showed nano-sized vesicles, a low polydispersity index, a high entrapment efficiency, and zeta potential. Further, MZBSo was incorporated into the gel using carbopol 934P and chitosan polymers. The selected miconazole bilosome gel (MZBSoG2) demonstrated an acceptable pH (6.4 ± 0.1), viscosity (1856 ± 21 cP), and spreadability (6.6 ± 0.2 cm2). Compared to MZBSo (86.76 ± 3.7%), MZBSoG2 showed a significantly (p < 0.05) slower drug release (58.54 ± 4.1%). MZBSoG2 was found to be a non-irritant because it achieved a score of zero (standard score) in the HET-CAM test. It also exhibited significant antifungal activity compared to pure MZ against Candida albicans and Aspergillus niger. The stability study results showed no significant changes after stability testing under accelerated conditions. MZ-loaded gels could serve as effective alternative carriers for improving therapeutic efficacy.

7.
Biomedicines ; 10(12)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36551777

RESUMO

Researchers have revealed that Rhus verniciflua heartwood, which contains fustin as an important component, possesses antioxidant-mediated, anti-mutagenic, and anti-rheumatoid arthritis characteristics. Additionally, out of the numerous plant-derived secondary metabolites, there are various research papers concentrating on flavonoids for potential advantages in neurological illnesses. The current study aims to assess the neuroprotective potential of fustin in rodents over 3-nitropropionic acid (3-NPA)-induced Huntington's disease (HD)-like consequences. The efficacy of fustin 50 and 100 mg/kg was studied with multiple-dose administrations of 3-NPA, which experimentally induced HD-like symptoms in rats for 22 days. At the end of the study, several behavioral tests were performed including a beam walk, rotarod, and grip strength tests. Similarly, some biochemical parameters were assessed to support oxidative stress (reduced glutathione-GSH, superoxide dismutase-SOD, catalase-CAT, and malondialdehyde-MDA), alteration in neurotransmitters (gamma-aminobutyric acid-GABA-and glutamate), alteration in brain-derived neurotrophic factor activity, and nitrite levels. Additionally, pro-inflammatory parameters were carried out to evaluate the neuroinflammatory responses associated with streptozotocin such as TNF-α, IL-1ß, and COX in the perfused brain. The fustin-treated group exhibited a significant restoration of memory function via modulation in behavioral activities. Moreover, 3-NPA altered biochemical, neurotransmitters, brain protein levels, and neuroinflammatory measures, which fustin efficiently restored. This is the first report demonstrating the efficacy of novel phytoconstituent fustin as a potential future candidate for the treatment of HD via offering neuroprotection by subsiding the oxidative and enzymatic activity in the 3-NPA experimental animal paradigm.

8.
Gels ; 8(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36286177

RESUMO

Hydrogels can provide instant relief to pain and facilitate the fast recovery of wounds. Currently, the incorporation of medicinal herbs/plants in polymer matrix is being investigated due to their anti-bacterial and wound healing properties. Herein, we investigated the novel combination of chitosan (CS) and chondroitin sulfate (CHI) to synthesize hydrogels through freeze gelation process and enriched it with garlic (Gar) by soaking the hydrogels in garlic juice for faster wound healing and resistance to microbial growth at the wound surface. The synthesized hydrogels were characterized via Fourier-transform infrared spectroscopy (FTIR), which confirmed the presence of relevant functional groups. The scanning electron microscopy (SEM) images exhibited the porous structure of the hydrogels, which is useful for the sustained release of Gar from the hydrogels. The synthesized hydrogels showed significant inhibition zones against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). Furthermore, cell culture studies confirmed the cyto-compatibility of the synthesized hydrogels. Thus, the novel hydrogels presented in this study can offer an antibacterial effect during wound healing and promote tissue regeneration.

9.
Polymers (Basel) ; 14(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36145851

RESUMO

The clinical application of phytochemicals such as thymoquinone (THQ) is restricted due to their limited aqueous solubility and oral bioavailability. Developing mucoadhesive nanocarriers to deliver these natural compounds might provide new hope to enhance their oral bioavailability. Herein, this investigation aimed to develop THQ-loaded lipid-polymer hybrid nanoparticles (THQ-LPHNPs) based on natural polymer chitosan. THQ-LPHNPs were fabricated by the nanoprecipitation technique and optimized by the 3-factor 3-level Box−Behnken design. The optimized LPHNPs represented excellent properties for ideal THQ delivery for oral administration. The optimized THQ-LPHNPs revealed the particles size (PS), polydispersity index (PDI), entrapment efficiency (%EE), and zeta potential (ZP) of <200 nm, <0.25, >85%, and >25 mV, respectively. THQ-LPHNPs represented excellent stability in the gastrointestinal milieu and storage stability in different environmental conditions. THQ-LPHNPs represented almost similar release profiles in both gastric as well as intestinal media with the initial fast release for 4 h and after that a sustained release up to 48 h. Further, the optimized THQ-LPHNPs represent excellent mucin binding efficiency (>70%). Cytotoxicity study revealed much better anti-breast cancer activity of THQ-LPHNPs compared with free THQ against MDA-MB-231 and MCF-7 breast cancer cells. Moreover, ex vivo experiments revealed more than three times higher permeation from the intestine after THQ-LPHNPs administration compared to the conventional THQ suspension. Furthermore, the THQ-LPHNPs showed 4.74-fold enhanced bioavailability after oral administration in comparison with the conventional THQ suspension. Therefore, from the above outcomes, mucoadhesive LPHNPs might be suitable nano-scale carriers for enhanced oral bioavailability and therapeutic efficacy of highly lipophilic phytochemicals such as THQ.

10.
Artigo em Inglês | MEDLINE | ID: mdl-35955076

RESUMO

BACKGROUND: Rosinidin is a flavonoid anthocyanin pigmentation found in shrub flowers such as Catharanthus roseus and Primula rosea. The molecular docking studies predicted that rosinidin has adequate structural competency, making it a viable medicinal candidate for the treatment of a wide range of disorders. The current study intends to assess rosinidin nephroprotective efficacy against nephrotoxicity induced by cisplatin in rats. MATERIALS AND METHODS: Oral acute toxicity tests of rosinidin were conducted to assess potential toxicity in animals, and it was shown to be safe. The nephroprotective effect of rosinidin 10, and 20 mg/kg were tested in rats for 25 days with concurrent administration of cisplatin. Several biochemical parameters were measured to support enzymatic and non-enzymatic oxidative stress such as superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH). Likewise, changes in several non-protein-nitrogenous components and blood chemistry parameters were made to support the theory linked with the pathogenesis of chemical-induced nephrotoxicity. RESULTS: Cisplatin caused significant changes in biochemical, enzymatic, and blood chemistry, which rosinidin efficiently controlled. CONCLUSIONS: The present investigation linked rosinidin with nephroprotective efficacy in experimental models.


Assuntos
Antioxidantes , Cisplatino , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Cisplatino/toxicidade , Creatinina , Glutationa/metabolismo , Rim , Simulação de Acoplamento Molecular , Estresse Oxidativo , Ratos , Superóxido Dismutase/metabolismo
11.
Nanomaterials (Basel) ; 12(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36014631

RESUMO

The present study describes the use of a leaf extract from Ficus carica as a source of natural antioxidants for the surface alteration of bulk titanium dioxide (TiO2) in two steps. First, the hydro-thermal treatment of the bulk TiO2 material was carried out and followed by thermal annealing at 300 °C for 3 h in air. The role of the leaf extract of Ficus carica on the performance of the bulk TiO2 material for the removal of methylene blue (MB) was also studied. Various analytical techniques such as powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) were used to explore the crystalline structure, morphology, and composition. The bulk TiO2 material after the leaf-extract treatment exhibited mixed anatase and rutile phases, a flower-like morphology, and Ti, O, and C were its main elements. The average crystallite size was also calculated, and the obtained values for the bulk TiO2 material, 18.11 nm, and the treated bulk TiO2 material with various amounts, 5, 10, and 15 mL, of leaf extract were 16.4, 13.16, and 10.29 nm respectively. Moreover, Fourier-transform infrared spectroscopy validated the typical metal-oxygen bonds and strengthened the XRD results. The bulk TiO2 material chemically treated with Ficus carica has shown outstanding activity towards the degradation of MB under sunlight. The 15 mL of Ficus carica extract significantly enhanced the photocatalytic activity of the bulk TiO2 material towards the degradation of MB. The dye degradation efficiency was found to be 98.8%, which was experimentally proven by the Fourier Transform Infrared spectroscopoyy (FTIR) analysis. The obtained performance of the bulk TiO2 material with Ficus carica revealed excellent surface modifying properties for poorly-performing photocatalysts towards the degradation of synthetic dyes when used in their pristine form. The presented approach suggests that Ficus carica could be of great interest for tuning the surface properties of materials, either in the form of nano-size or bulk-phase in a particular application.

12.
Bioengineering (Basel) ; 9(8)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36004892

RESUMO

Implants are used to replace damaged biological structures in human body. Although stainless steel (SS) is a well-known implant material, corrosion of SS implants leads to the release of toxic metallic ions, which produce harmful effects in human body. To prevent material degradation and its harmful repercussions, these implanted materials are subjected to biocompatible coatings. Polymeric coatings play a vital role in enhancing the mechanical and biological integrity of the implanted devices. Zein is a natural protein extracted from corn and is known to have good biocompatibility and biodegradability. In this study, zein/Ag-Sr doped mesoporous bioactive glass nanoparticles (Ag-Sr MBGNs) were deposited on SS substrates via electrophoretic deposition (EPD) at different parameters. Ag and Sr ions were added to impart antibacterial and osteogenic properties to the coatings, respectively. In order to examine the surface morphology of coatings, optical microscopy and scanning electron microscopy (SEM) were performed. To analyze mechanical strength, a pencil scratch test, bend test, and corrosion and wear tests were conducted on zein/Ag-Sr doped MBGN coatings. The results show good adhesion strength, wettability, corrosion, and wear resistance for zein/Ag-Sr doped MBGN coatings as compared to bare SS substrate. Thus, good mechanical and biological properties were observed for zein/Ag-Sr doped MBGN coatings. Results suggested these zein/Ag-Sr MBGNs coatings have great potential in bone regeneration applications.

13.
ACS Omega ; 7(27): 23245-23254, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35847266

RESUMO

The fustin plant-derived bioflavonoid obtained from a common plant known as lacquer tree from family Anacardiaceae, formally known as Rhus verniciflua Stokes, is known to exert a variety of therapeutic properties. The current investigation proved the anti-ulcerative property of fustin on ethanol-induced gastric ulcers in an experimental animal model. The fustin 50 and 100 mg/kg was studied in an experimental rat model by performing an 8 day protocol. The ulcer index, pH, total acidic content, and biochemical parameters such as glutathione (GSH), superoxide dismutase (SOD), catalase activity (CAT), malondialdehyde (MDA), interleukin-1ß, prostaglandin E-2, tumor necrosis factor-α (TNF-α), myeloperoxidase, and nitric oxide (NO) in serum were measured. The gastric parameter such as ulcer index, pH, and acidic content was maintained in the fustin groups compared to the ethanol control group. Clinical presentation of gastric ulcers includes a significant increase in serum levels, GSH, SOD, and CAT and decreased MDA, TNF-α, interleukin-1ß, and prostaglandin E-2 parameters in contrast to normal groups. The treatment regimen with fustin has significantly restored all serum parameters in test groups. The current study helps to develop reasonable phytochemical options for the innervations of chemical-induced gastric ulcers.

14.
Molecules ; 27(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35889343

RESUMO

The nano-drug delivery system has gained greater acceptability for poorly soluble drugs. Alogliptin (ALG) is a FDA-approved oral anti-hyperglycemic drug that inhibits dipeptidyl peptidase-4. The present study is designed to prepare polymeric ALG nanoparticles (NPs) for the management of diabetes. ALG-NPs were prepared using the nanoprecipitation method and further optimized by Box−Behnken experimental design (BBD). The formulation was optimized by varying the independent variables Eudragit RSPO (A), Tween 20 (B), and sonication time (C), and the effects on the hydrodynamic diameter (Y1) and entrapment efficiency (Y2) were evaluated. The optimized ALG-NPs were further evaluated for in vitro release, intestinal permeation, and pharmacokinetic and anti-diabetic activity. The prepared ALG-NPs show a hydrodynamic diameter of between 272.34 nm and 482.87 nm, and an entrapment efficiency of between 64.43 and 95.21%. The in vitro release data of ALG-NPs reveals a prolonged release pattern (84.52 ± 4.1%) in 24 h. The permeation study results show a 2.35-fold higher permeation flux than pure ALG. ALG-NPs exhibit a significantly (p < 0.05) higher pharmacokinetic profile than pure ALG. They also significantly (p < 0.05) reduce the blood sugar levels as compared to pure ALG. The findings of the study support the application of ALG-entrapped Eudragit RSPO nanoparticles as an alternative carrier for the improvement of therapeutic activity.


Assuntos
Portadores de Fármacos , Nanopartículas , Tamanho da Partícula , Piperidinas , Polímeros , Uracila/análogos & derivados
15.
Materials (Basel) ; 15(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897530

RESUMO

Commercially pure titanium (Ti) is widely used in bio-implants due to its high corrosion resistance. However, Ti exhibits marginally low mechanical and tribological properties, which limit its applications in some orthopedic implants. In this work, the Ti samples were subjected to ultrasonic surface mechanical attrition treatment (SMAT) for various durations to improve their surface properties such as hardness, strength and surface energy. SMAT-induced grain refinement was analyzed using optical, scanning electron and atomic force microscopy techniques. A Vickers hardness test was performed to determine the through-thickness hardness. Mechanical testing was carried out to measure the yield strength, ultimate tensile strength and ductility of the specimens. Corrosion tests were performed on a Gamry Potentiostat. The surface energy of SMAT-modified samples was calculated using the Owens-Wendt method. It was observed that SMAT reduced the average grain size from 50 µm to as low as 100 nm. The grain refinement and the corresponding grain boundary density led to a significant improvement in mechanical properties and biocompatibility in terms of increased hardness, yield and tensile strengths, surface energy, corrosion rate and hydrophilicity.

16.
ACS Omega ; 7(28): 24231-24240, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35874261

RESUMO

Objectives: Malvidin, a dietary anthocyanin can be a potent drug for the treatment of neuronal toxicity. The investigation was aimed to study the antioxidant role of malvidin against aluminum chloride (AlCl3)-induced neurotoxicity in rats. Methods: To evaluate the neuroprotective role of malvidin, the rats were divided into four different groups: group I received saline, group II received AlCl3, and groups III and IV were administered with 100 and 200 mg/kg malvidin after AlCl3 for 60 days. During the evaluation period, all the groups were subjected to a behavioral test. On the 61st day of the study, rat brains were removed and used for a neurochemical assay. Results: From the present study, malvidin ameliorated the effects of AlCl3 on behavioral parameters. Biochemical investigation revealed that oral treatment of malvidin shows neuroprotective effects through regulation of antioxidant levels and neuroinflammation in the AlCl3-exposed rats. Conclusion: The results indicate that malvidin possesses antioxidant activity via acetylcholinesterase inhibition and regulation of oxidative stress in neuronal cells. Hence, malvidin could be a potential drug in correcting Alzheimer's disease.

17.
Membranes (Basel) ; 12(7)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35877904

RESUMO

The majority of food packaging materials are petroleum-based polymers, which are neither easily recyclable nor ecologically friendly. Packaging films should preferably be transparent, light in weight, and easy to process, as well as mechanically flexible, and they should meet the criteria for food encapsulation. In this study, poly (vinyl alcohol) (PVA)-based films were developed by incorporating glass flakes into the films. The selection of PVA was based on its well-known biodegradability, whereas the selection of glass flakes was based on their natural impermeability to oxygen and moisture. The films were processed using the blade coating method and were characterized in terms of transparency, oxygen transmission rate, mechanical strength, and flexibility. We observed that the incorporation of glass flakes into the PVA matrix did not significantly change the transparency of the PVA films, and they exhibited a total transmittance of around 87% (at 550 nm). When the glass flakes were added to the PVA, a significant reduction in moisture permeation was observed. This reduction was also supported and proven by Bhardwaj's permeability model. In addition, even after the addition of glass flakes to the PVA, the films remained flexible and showed no degradation in terms of the water vapor transmission rate (WVTR), even after bending cycles of 23,000. The PVA film with glass flakes had decent tensile characteristics, i.e., around >50 MPa. Increasing the concentration of glass flakes also increased the hardness of the films. Finally, a piece of bread was packaged in a well-characterized composite film. We observed that the bread packaged in the PVA film with glass flakes did not show any degradation at all, even after 10 days, whereas the bread piece packaged in a commercial polyethylene bag degraded completely. Based on these results, the developed packaging films are the perfect solution to replace commercial non-biodegradable films.

18.
Curr Drug Metab ; 23(6): 447-459, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35676849

RESUMO

At present, people and patients worldwide are relying on the medicinal plant as a therapeutic agent over pharmaceuticals because the medicinal plant is considered safer, especially for chronic disorders. Several medicinal plants and their components are being researched and explored for their possible therapeutic contribution to CNS disorders. Thymoquinone (TQ) is one such molecule. Thymoquinone, one of the constituents of Plant Nigella Sativa, is effective against several neurodegenerative diseases like, Alzheimer's, Depression, Encephalomyelitis, Epilepsy, Ischemia, Parkinson's, and Traumatic. This review article presents the neuropharmacological potential of TQ's, their challenges, and delivery prospects, explicitly focusing on neurological disorders along with their chemistry, pharmacokinetics, and toxicity. Since TQ has some pharmacokinetic challenges, scientists have focused on novel formulations and delivery systems to enhance bioavailability and ultimately increase its therapeutic value. In the present work, the role of nanotechnology in neurodegenerative disease and how it improves the bioavailability and delivery of a drug to the site of action has been discussed. There are a few limitations to developing novel drug formulations, including solubility, pH, and compatibility of nanomaterials. Since here we are targeting CNS disorders, the bloodbrain barrier (BBB) becomes an additional challenge. Hence, the review summarized the novel aspects of delivery and biocompatible nanoparticles-based approaches for targeted drug delivery into CNS, enhancing TQ bioavailability and its neurotherapeutic effects.


Assuntos
Doenças do Sistema Nervoso Central , Doenças Neurodegenerativas , Nigella sativa , Plantas Medicinais , Benzoquinonas/farmacologia , Benzoquinonas/uso terapêutico , Doenças do Sistema Nervoso Central/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Nigella sativa/química
19.
Molecules ; 27(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35566224

RESUMO

Isopropyl Isothiocyanate (IPI) is a poorly water-soluble drug used in different biological activities. So, the present work was designed to prepare and evaluate IPI loaded vesicles and evaluated for vesicle size, polydispersity index (PDI) and zeta potential, encapsulation efficiency, drug release, and drug permeation. The selected formulation was coated with chitosan and further assessed for the anti-platelet and anti-thrombotic activity. The prepared IPI vesicles (F3) exhibited a vesicle size of 298 nm ± 5.1, the zeta potential of −18.7 mV, encapsulation efficiency of 86.2 ± 5.3% and PDI of 0.33. The chitosan-coated IPI vesicles (F3C) exhibited an increased size of 379 ± 4.5 nm, a positive zeta potential of 23.5 ± 2.8 mV and encapsulation efficiency of 77.3 ± 4.1%. IPI chitosan vesicle (F3C) showed enhanced mucoadhesive property (2.7 folds) and intestinal permeation (~1.8-fold) higher than IPI vesicles (F3). There was a significant (p < 0.05) enhancement in size, muco-adhesion, and permeation flux achieved after coating with chitosan. The IPI chitosan vesicle (F3C) demonstrated an enhanced bleeding time of 525.33 ± 12.43 s, anti-thrombin activity of 59.72 ± 4.21, and inhibition of platelet aggregation 68.64 ± 3.99%, and anti-platelet activity of 99.47%. The results of the study suggest that IPI chitosan vesicles showed promising in vitro results, as well as improved anti-platelet and anti-thrombotic activity compared to pure IPI and IPI vesicles.


Assuntos
Quitosana , Nanopartículas , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Isotiocianatos , Sistemas de Liberação de Fármacos por Nanopartículas , Tamanho da Partícula
20.
Gels ; 8(5)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35621552

RESUMO

The present research work was designed to prepare Azithromycin (AM)-loaded nano lipid carriers (NLs) for ocular delivery. NLs were prepared by the emulsification-homogenization method and further optimized by the Box Behnken design. AM-NLs were optimized using the independent constraints of homogenization speed (A), surfactant concentration (B), and lipid concentration (C) to obtain optimal NLs (AM-NLop). The selected AM-NLop was further converted into a sol-gel system using a mucoadhesive polymer blend of sodium alginate and hydroxyl propyl methyl cellulose (AM-NLopIG). The sol-gel system was further characterized for drug release, permeation, hydration, irritation, histopathology, and antibacterial activity. The prepared NLs showed nano-metric size particles (154.7 ± 7.3 to 352.2 ± 15.8 nm) with high encapsulation efficiency (48.8 ± 1.1 to 80.9 ± 2.9%). AM-NLopIG showed a more prolonged drug release (98.6 ± 4.6% in 24 h) than the eye drop (99.4 ± 5.3% in 3 h). The ex vivo permeation result depicted AM-NLopIG, AM-IG, and eye drop. AM-NLopIG exhibited significant higher AM permeation (60.7 ± 4.1%) than AM-IG (33.46 ± 3.04%) and eye drop (23.3 ± 3.7%). The corneal hydration was found to be 76.45%, which is within the standard limit. The histopathology and HET-CAM results revealed that the prepared formulation is safe for ocular use. The antibacterial study revealed enhanced activity from the AM-NLopIG.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA