Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38131523

RESUMO

Elevated concentrations of contaminants have negative impacts on aquatic organisms and their parasites. Changes in parasite infections have been proposed as a technique for monitoring the health of aquatic ecosystems. Furthermore, alterations in physiological responses (biomarkers) of organisms have also been used to delineate ecosystem quality. Lake Heritage is situated along the Crocodile River in Muldersdrift, Gauteng, South Africa, and is subject to contamination by acid mine drainage. Clarias gariepinus is a well-studied bioindicator species and host to numerous endoparasites and ectoparasites. The aims of this study were to delineate the health status of Lake Heritage through a multifaceted approach by comparing the water quality, biomarker responses, and parasite biodiversity of C. gariepinus, compared to unexposed laboratory-reared fish. Physical and chemical water quality parameters were determined using a hand-held probe, test kits, and element analysis with inductively coupled plasma-mass spectrometry. Biomarker responses in the gill, liver, and muscle tissues from C. gariepinus were assessed for total protein, metallothioneins, superoxide dismutase (SOD), and reduced glutathione (GSH) concentrations and activities of acetylcholinesterase and catalase. Results for water quality variables showed higher pH, nitrate, hardness, and copper levels compared with the South African Target Water Quality Guidelines. Catalase activity and concentrations of SOD and reduced GSH showed a response in C. gariepinus to the water quality. Ectoparasites had lower prevalence and mean intensity than endoparasites. However, there were no differences in the physiological responses between infected and uninfected hosts. The study shows that the eutrophic conditions in Lake Heritage cause biomarker responses in the host when compared to host fish in laboratory conditions. Integr Environ Assess Manag 2024;00:1-15. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

2.
J Comp Physiol B ; 193(3): 271-279, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37169971

RESUMO

It has been suggested that parasites are effective bioindicators as they are sensitive to environmental changes and, in some cases, accumulate trace elements in higher concentrations than their hosts. Accumulated elements sequester in different organs. In monogenean and crustacean ectoparasites, sclerotised structures and egg yolk appear to be the preferred site for element sequestration. In this study, the sequestration of trace elements; Mg, Al, Ca, Fe, Cu, and Zn in Lamproglena clariae was studied from two rivers. Adult L. clariae were collected from the gills of Clarias gariepinus from Lake Heritage in the Crocodile River and in the Vaal River below the Vaal Dam, South Africa. Collected parasites were flash frozen in liquid nitrogen and sectioned with a cryomicrotome. Sections were treated with Phen-Green to observe fluorescent signals. Trace elements in the parasite were analysed using a scanning electron microscope with an energy-dispersive spectroscope (SEM-EDS). Results showed more intense fluorescence signals in the exoskeleton compared to tissues, and in the egg yolk. Analysis by SEM-EDS confirmed the presence of elements in the parasite from both sites. Levels of Al were higher in L. clariae from the Vaal River than those from Lake Heritage, and Fe was higher in L. clariae from Lake Heritage. Element distribution patterns in the parasite matched those in the water from the sites. Unlike other crustaceans, regulation of metals in adult females of L. clariae does not occur through moulting, but high levels occurred in the yolk.


Assuntos
Peixes-Gato , Oligoelementos , Feminino , Animais , Brânquias , Água Doce , Rios/química
3.
J Trace Elem Med Biol ; 74: 127053, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35939924

RESUMO

BACKGROUND: Elevated levels of trace elements in the aquatic environment poses risks to the health of biota and humans. Parasites are important components in ecosystems; responding to changes in the health of aquatic ecosystems and can accumulate trace elements in their tissues to higher levels than their hosts. Monogeneans are an important group of fish ectoparasites being directly exposed to the aquatic environment. METHODS: In this study concentrations of Ti, Fe, Cu, Zn, Rb, Sr and Ag were analysed in the monogenean parasite, Paradiplozoon ichthyoxanthon (by total reflection x-ray fluorescence spectrometry and graphite furnace atomic absorption spectrometry), and the muscle, liver and gills of two host fish species, Labeobarbus aeneus and Labeobarbus kimberleyensis (by inductively coupled plasma -- mass spectrometry). RESULTS: Most striking was the accumulation pattern for Zn in parasites; mean levels of Zn were as high as 1448 and 1652 mg kg-1 dw, respectively, with no significant difference between the two host-parasite groups, leading to bioconcentration factors of approximately 93 (parasite/fish muscle) and 15 (parasite/fish liver). In addition, Fe was accumulated in the parasite to a higher degree compared to the fish hosts' tissues. Cu levels were higher in P. ichthyoxanthon than in the muscle tissue of both host fishes, but lower than liver tissue. CONCLUSION: These findings demonstrate the usefulness of this parasite species as a sentinel organism in aquatic ecosystems it inhabits for Fe and Zn. Other trace elements under investigation were not accumulated higher in the parasite compared to its fish host. Lower Rb levels in the parasite compared to its hosts indicate no biomagnification of this metal. Further investigations are required to determine if similar trends in trace element accumulation occur in other monogeneans. DATA AVAILABILITY: All data generated in the analysis of host and parasite tissues are presented in the manuscript.


Assuntos
Cyprinidae , Grafite , Oligoelementos , Trematódeos , Poluentes Químicos da Água , Animais , Cyprinidae/parasitologia , Ecossistema , Monitoramento Ambiental/métodos , Água Doce , Brânquias , Humanos , Oligoelementos/análise , Trematódeos/fisiologia , Poluentes Químicos da Água/análise
4.
J Parasitol ; 108(1): 10-21, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34995354

RESUMO

Globally, parasites are sensitive toward environmental changes, and, in some cases, they are even more sensitive than their hosts. However, there is limited knowledge on the physiological responses of parasites and their effects on their hosts in relation to environmental degradation. In this study, metallothioneins (MTs) were isolated and compared between the ectoparasite Lamproglena clariae and its host fish Clarias gariepinus. Differences in the levels of MTs in the parasite and host were compared to physicochemical water quality variables and metals to determine if MT expression was linked with changes in water quality. Clarias gariepinus individuals were sampled from 2 sites of differing water quality along the Vaal River using gill nets and assessed for L. clariae. Gill, muscle, and liver tissue of the host and L. clariae were collected and stored in liquid nitrogen for analysis of MT. Water and sediment samples were collected for metal analysis by inductively coupled plasma-optical emission spectrometry and inductively coupled plasma-mass spectrometry. Nutrient levels and water hardness in water samples were assessed using spectrophotometry. MTs were quantified using spectrophotometry and size exclusion chromatography in the host and parasite, respectively. Infections by L. clariae differed between sites, with higher parasite intensity at the unpolluted Vaal Dam site. Concentrations of MT in host tissues and L. clariae were significantly higher at the polluted site, below the Vaal River Barrage, compared to the Vaal Dam site. Parasite MT concentrations were significantly lower compared to concentrations in the liver and gill tissue of C. gariepinus individuals. In conclusion, differences in the concentrations of MT and infection biology of L. clariae reflected the state of the environment and support the usefulness of this parasite and other Lamproglena spp. as bioindicators.


Assuntos
Peixes-Gato/parasitologia , Copépodes/metabolismo , Ectoparasitoses/veterinária , Doenças dos Peixes/parasitologia , Metalotioneína/metabolismo , Qualidade da Água , Animais , Cromatografia em Gel/veterinária , Copépodes/patogenicidade , Ectoparasitoses/parasitologia , Biomarcadores Ambientais , Brânquias/química , Brânquias/parasitologia , Fígado/química , Metalotioneína/análise , Músculos/química , Coelhos
5.
Folia Parasitol (Praha) ; 682021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34152288

RESUMO

Adult trematodes of Allocreadium Looss, 1900 (Digenea) infect the intestine of mostly freshwater fishes in Asia, Europe, Africa and the Americas. During routine parasitological surveys in the Vaal River system, adult trematodes were collected from the intestine of smallmouth yellowfish, Labeobarbus aeneus (Burchell). The trematodes were confirmed to represent a member of Allocreadium and did not match any existing taxon. Therefore, they are described as a new species, Allocreadium apokryfi sp. n. The morphology of the new species most closely resembles that of Allocreadium aswanense El-Naffar, Saoud et Hassan, 1984, but it differs from it by having a bipartite internal seminal vesicle, wider eggs, a shorter intertesticular distance, an intestinal bifurcation at the ventral sucker level, a ventral sucker that is larger than the oral sucker, and a genital pore near the intestinal bifurcation or the ventral sucker. The surface topology of the new species is notably different from that of other allocreadiids. Papillae were observed in the ventral sucker and surrounding both ventral and oral suckers, but the number and arrangement of the latter were not consistent among specimens. The protruding cirrus of A. apokryfi sp. n. was described using SEM and is the first such observation for the genus. Genetic characterisation showed that the new species was clearly distinct from other Allocreadium spp. using both 18S (nucleotide difference 1.3-9.1%) and 28S (4.7-6.5%) rDNA, forming a well-supported clade in Allocreadium. The presence of A. apokryfi sp. n. in a well-studied river is unexpected, and considering the diet of its host and the scarcity of Allocreadium in Africa, the possible biology of this species is discussed herein.


Assuntos
Cyprinidae , Doenças dos Peixes/epidemiologia , Interações Hospedeiro-Parasita , Trematódeos/fisiologia , Infecções por Trematódeos/veterinária , Animais , Evolução Biológica , Doenças dos Peixes/parasitologia , Características de História de Vida , Prevalência , África do Sul/epidemiologia , Infecções por Trematódeos/epidemiologia , Infecções por Trematódeos/parasitologia
6.
Int J Parasitol Parasites Wildl ; 12: 134-141, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32547919

RESUMO

Stable isotope analysis offers a unique tool for comparing trophic interactions and food web architecture in ecosystems based on analysis of stable isotope ratios of carbon (13C/12C) and nitrogen (15N/14N) in organisms. Clarias gariepinus were collected from six sites along the Vaal River, South Africa and were assessed for ectoparasites and endoparasites. Lamproglena clariae (Copepoda), Tetracampos ciliotheca and Proteocephalus glanduligerus (Cestoda), and larval Contracaecum sp. (Nematoda) were collected from the gills, intestine and mesenteries, respectively. Signatures of δ13C and δ15N were analysed in host muscle tissue and parasites using bulk stable isotope analysis. Variable stable isotope enrichment between parasites and host were observed; L. clariae and the host shared similar δ15N signatures and endoparasites being depleted in δ13C and δ15N relative to the host. Differences in stable isotope enrichment between parasites could be related to the feeding strategy of each parasite species collected. Geographic and spatial differences in enrichment of stable isotopes observed in hosts were mirrored by parasites. As parasites rely on a single host for meeting their nutritional demands, stable isotope variability in parasites relates to the dietary differences of host organisms and therefore variations in baseline stable isotope signatures of food items consumed by hosts.

7.
Parasitol Res ; 119(4): 1393-1400, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32030511

RESUMO

Parasitism is commonly recognised as a consumer strategy, although, the interaction of parasites in communities and ecosystems are generally poorly understood. As parasites are integral parts of food webs, analysis of the trophic interactions between parasites and hosts was assessed through comparison of stable isotope ratios of carbon (13C/12C) and nitrogen (15N/14N). Largemouth yellowfish (Labeobarbus kimberleyensis) infected with the Asian tapeworm (Schyzocotyle acheilognathi) were collected from the Vaal Dam. Signatures of δ13C and δ15N were assessed in host muscle and liver tissue, and cestodes using an elemental analyser coupled with an isotope ratio-mass spectrometer (EA-IRMS). Hosts were enriched by 4.1‰ in the heavy nitrogen isotope with respect to the S. acheilognathi and therefore occupy a higher trophic position than the parasite. Comparison of δ13C indicates that dietary sources of carbon in cestodes are derived from the host liver. Comparison of stable isotope signatures between Paradiplozoon ichthyoxanthon (another common parasite of the Largemouth yellowfish in the Vaal River) and S. acheilognathi showed that the monogenean was enriched by 5.3‰ in 15N which accounts for a difference of almost two trophic positions. Isotope differences in the host-parasite system considered indicate that differences can be related to the mode of nutrient acquisition employed by host and parasites. Cestodes, being depleted in both 13C and 15N relative to the host and monogenean (P. ichthyoxanthon), indicate that S. acheilognathi assimilates nutrients derived from the host metabolism which are released from the liver.


Assuntos
Cestoides/isolamento & purificação , Infecções por Cestoides/veterinária , Cyprinidae/parasitologia , Fígado/parasitologia , Músculos/parasitologia , Animais , Carbono , Isótopos de Carbono/análise , Ecossistema , Cadeia Alimentar , Interações Hospedeiro-Parasita , Isótopos de Nitrogênio/análise , Estado Nutricional
8.
Sci Total Environ ; 659: 1158-1167, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31096329

RESUMO

The levels of Cr, Cu, Zn, Se, Ag, Cd, Hg, and Pb were determined in muscle and liver samples from 30 specimens of fish belonging to the species Labeobarbus aeneus, Labeobarbus kimberleyensis, and Labeo umbratus from the Vaal Dam. Health risks for human fish consumers were estimated using the target hazard quotient (THQ), the Se:Hg-ratio, and Se health benefit value (Se HBV). This is the first comprehensive report on Hg levels in fish from this lake. Mean concentrations ranging from 0.247-0.481 mg/kg dw in muscle and from 0.170-0.363 mg/kg dw in liver clearly show a contamination with this element. Although levels in muscle did not exceed maximum allowances for human consumption, a calculated THQ of 0.12 and 0.14 for the two Labeobarbus species, respectively, showed a potential risk due to additive effects. All Se:Hg-ratios as well as Se HBVs clearly suggested positive effects for fish consumers. Levels of Cu were remarkably high in the liver of L. umbratus, calling for further investigation on this species. Cadmium levels were above the maximum allowances for fish consumption in the liver of all three species (means between 0.190 and 0.460 mg/kg dw), but below the LOD in all muscle and intestine samples. This is also the first report of Ag in fish from South Africa. Levels were below the LOD in muscle, but well detectable in liver; they varied significantly between the two Labeobarbus species (0.054 ±â€¯0.030 and 0.037 ±â€¯0.016 mg/kg dw) compared to L. umbratus (1.92 ±â€¯0.83 mg/kg dw) and showed a positive correlation with Cu levels (63.7 ±â€¯17.0; 70.3 ±â€¯9.0 and 1300 ±â€¯823 mg/kg dw), possibly due to similar chemical affinities to metallothioneins. The detected Ag levels can serve as a basis to monitor the development of this new pollutant in aquatic environments in South Africa and worldwide.


Assuntos
Cyprinidae/metabolismo , Monitoramento Ambiental , Oligoelementos/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Contaminação de Alimentos/estatística & dados numéricos , Humanos , Mercúrio/metabolismo , Selênio/metabolismo , Prata/metabolismo , África do Sul
9.
PLoS One ; 13(6): e0197804, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29897941

RESUMO

Parasites of fishes have been shown to be effective bioindicators of the aquatic environment. Few investigations have been conducted on ectoparasite models and therefore little is known about the fate of trace elements and metals which they accumulate. In this study trace element sequestration was observed in the carapace of the fish louse, Argulus japonicus and found to relate to the sex of the parasite, as well as, the degree of sclerotization of the carapace. Adults of A. japonicus were collected from cyprinid hosts in the Vaal Dam, South Africa. Parasites were removed and flash frozen in liquid nitrogen before being sectioned with a cryomicrotome. Sections and whole mounts of parasites were prepared and treated with Phen-Green TM FL cell-permeant diacetate. Cryosections were assessed for trace elements and metals using a scanning electron microscope equipped with energy dispersive spectroscopy. Results indicated that in both male and female parasites, trace elements become bound to the carapace and produce more intense fluorescence than in soft tissues. Sexual dimorphic differences were further observed between male and female parasites. The intensity of the fluorescence signals was greater in the carapace of male parasites than in females, particularly when comparing the carapace of the ventral side of the thorax. In females, an amorphous layer of material surrounding the eggs was observed and produced an intense fluorescent signal. Levels of trace elements and metals detected were not significantly different between male and female parasites. Results observed serve as a demonstration for the first time of trace element sequestration in a freshwater crustacean parasite and possible mechanisms employed to reduce body burdens of trace elements and metals.


Assuntos
Calcificação Fisiológica/efeitos dos fármacos , Monitoramento Ambiental , Oligoelementos/toxicidade , Poluentes Químicos da Água/toxicidade , Exoesqueleto/efeitos dos fármacos , Animais , Arguloida/efeitos dos fármacos , Feminino , Água Doce , Masculino , Metais/toxicidade
10.
Artigo em Inglês | MEDLINE | ID: mdl-28644416

RESUMO

With the occurrence of recreational and small scale subsistence fishing activities at the Vaal Dam, South Africa, consumption of fish from this dam may result in health risks associated with trace elements and metals. The Vaal Dam is one of the largest dams in South Africa, located between the Gauteng Province and Orange Free State, and supplies water to approximately 11.6 million people. A total of 38 specimens of the benthic cyprinid fish Labeo umbratus were collected from the Vaal Dam during two surveys, in 2011 and 2016. Samples of muscle, liver, kidney, gill and spinal cord were analysed, along with sediment samples collected during the same surveys. Thirteen trace elements were analysed in the samples by Inductively Coupled Plasma-Optical Emission Spectrometry, Inductively Coupled Plasma-Mass Spectrometry, Atomic Absorption Spectroscopy and Total Reflection X-ray Fluorescence spectroscopy. This is the first survey on trace element and Hg accumulation in this fish species from the Vaal Dam and target hazard quotients (THQ) indicated that there is a risk for consumers of fish for As and Hg (THQ = 1.43 and 1.14 respectively). Although levels of trace elements in this impoundment have shown little change for a number of years and are lower than global background levels, studies detailing the accumulation of metals by fish inhabiting the Vaal Dam have indicated that trace elements in muscle tissue are above food safety guidelines. Trace element levels in L. umbratus are lower compared to other species inhabiting the Vaal Dam and further indicate that risks for consumers can be decreased if humans relying on fish from the Vaal Dam preferentially consume this species over others.


Assuntos
Cyprinidae , Contaminação de Alimentos , Mercúrio/química , Oligoelementos/química , Poluentes Químicos da Água/análise , Animais , Humanos , Mercúrio/toxicidade , África do Sul/epidemiologia , Espectrofotometria Atômica , Oligoelementos/toxicidade
11.
PLoS One ; 12(5): e0177558, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28498876

RESUMO

Exposure to metals and other trace elements negatively affects infection dynamics of monogeneans, including diplozoids, but, physiological mechanisms linked to exposure have yet to be documented. In this study sequestration of trace elements and reactive oxygen intermediate production in the monogenean, Paradiplozoon ichthyoxanthon, was demonstrated. During dissection of host fish, Labeobarbus aeneus, the gills were excised and assessed for P. ichthyoxanthon, which were removed and frozen for fluorescence microscopy or fixed for transmission electron microscopy. Trace elements were sequestered in the vitellaria and sclerites in P. ichthyoxanthon, and the presence of reactive oxygen intermediates was observed predominantly in the tegument of the parasite. Trace elements and metals identified and ranked according to weight percentages (wt%) in the vitellaria were Cu > C > Au > O > Cr > Fe > Si while for the sclerites C > Cu > O > Au > Fe > Cr > Si were identified. For most element detected, readings were higher in the vitellaria than the sclerites, except for C and O which were higher in sclerites. Specifically for metals, all levels detected in the vitellaria were greater than in sclerites. Based on the proportion of trace elements present in the vitellaria and sclerites it appears that most trace elements including metals were sequestered in the vitellaria. The results of reactive oxygen intermediate production in the tegument of the parasite suggests either trace element accumulation takes place across the tegument or results from the action of the host's immune response on the parasite. The results serve as the first demonstration of trace element sequestration and reactive oxygen intermediates in a freshwater monogenean parasite.


Assuntos
Metais/metabolismo , Oxigênio/metabolismo , Oligoelementos/metabolismo , Trematódeos/metabolismo , Animais , Água Doce , Microscopia de Fluorescência
12.
Parasit Vectors ; 9(1): 420, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27464982

RESUMO

BACKGROUND: Monogenea is a diverse group of ectoparasites showing great potential as sentinel organisms for monitoring environmental health. Exposure to metals negatively affects infrapopulations of monogeneans and exposure to aluminium has been found to negatively impact the survival of gyrodactylids. METHODS: Samples of infected host fish, the smallmouth yellowfish Labeobarbus aeneus (Cyprinidae), were collected from the Vaal Dam, South Africa and transported back to the laboratory in dark 160 l containers. Eggs of the monogenean Paradiplozoon ichthyoxanthon infecting L. aeneus were collected and exposed to varying concentrations of aluminium along with a control group in static tanks. The eggs were checked every 24 h and hatching commenced 13-14 days after exposure. Water samples were taken from exposure tanks and acidified for analysis of Al levels with inductively-coupled plasma mass spectrometry. RESULTS: Hatching of eggs was variable between exposures, and in 30 µg Al/l and 60 µg Al/l was found to occur before eggs in control beakers, whereas, exposure to 120 µg Al/l delayed hatching and reduced hatchability. Survival of hatched oncomiracidia was concentration dependent and negatively correlated with aluminium concentrations. Lowest survival was recorded for 60 µg Al/l and 120 µg Al/l where all larvae died shortly after or during hatching. Normal development of embryos of P. ichthyoxanthon within eggs exposed to all doses of aluminium indicates that the egg shell is moderately impermeable to metals and inhibits movement of aluminium across the shell and interacting with developing embryos. CONCLUSIONS: Higher larval mortality rate in 120 µg/l exposure can be related to aluminium crossing the egg shell in the late stages and causing death of unhatched yet fully developed embryos, possibly due to changes in the permeability of the egg shell as embryos neared developmental completion. Accelerated death of oncomiracidia after hatching indicates sensitivity toward high concentrations of aluminium.


Assuntos
Alumínio/farmacologia , Anti-Helmínticos/farmacologia , Platelmintos/efeitos dos fármacos , Zigoto/efeitos dos fármacos , Animais , Cyprinidae/parasitologia , Doenças dos Peixes/parasitologia , Platelmintos/isolamento & purificação , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA