Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Clim Chang ; 8(10): 866-872, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30416585

RESUMO

Global observations show that the ocean lost approximately 2% of its oxygen inventory over the last five decades 1-3, with important implications for marine ecosystems 4, 5. The rate of change varies with northwest Atlantic coastal waters showing a long-term drop 6, 7 that vastly outpaces the global and North Atlantic basin mean deoxygenation rates 5, 8. However, past work has been unable to resolve mechanisms of large-scale climate forcing from local processes. Here, we use hydrographic evidence to show a Labrador Current retreat is playing a key role in the deoxygenation on the northwest Atlantic shelf. A high-resolution global coupled climate-biogeochemistry model 9 reproduces the observed decline of saturation oxygen concentrations in the region, driven by a retreat of the equatorward-flowing Labrador Current and an associated shift toward more oxygen-poor subtropical waters on the shelf. The dynamical changes underlying the shift in shelf water properties are correlated with a slowdown in the simulated Atlantic Meridional Overturning Circulation 10. Our results provide strong evidence that a major, centennial-scale change of the Labrador Current is underway, and highlight the potential for ocean dynamics to impact coastal deoxygenation over the coming century.

2.
Science ; 359(6371)2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29301986

RESUMO

Oxygen is fundamental to life. Not only is it essential for the survival of individual animals, but it regulates global cycles of major nutrients and carbon. The oxygen content of the open ocean and coastal waters has been declining for at least the past half-century, largely because of human activities that have increased global temperatures and nutrients discharged to coastal waters. These changes have accelerated consumption of oxygen by microbial respiration, reduced solubility of oxygen in water, and reduced the rate of oxygen resupply from the atmosphere to the ocean interior, with a wide range of biological and ecological consequences. Further research is needed to understand and predict long-term, global- and regional-scale oxygen changes and their effects on marine and estuarine fisheries and ecosystems.


Assuntos
Monitoramento Ambiental , Aquecimento Global , Oxigênio/análise , Água do Mar/química , Adaptação Biológica , Animais , Organismos Aquáticos , Conservação dos Recursos Naturais , Pesqueiros , Oceanos e Mares
3.
Nature ; 542(7641): 303-304, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28202979
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA