Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 110(50): 20117-22, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24277808

RESUMO

The mutualistic symbiosis involving Glomeromycota, a distinctive phylum of early diverging Fungi, is widely hypothesized to have promoted the evolution of land plants during the middle Paleozoic. These arbuscular mycorrhizal fungi (AMF) perform vital functions in the phosphorus cycle that are fundamental to sustainable crop plant productivity. The unusual biological features of AMF have long fascinated evolutionary biologists. The coenocytic hyphae host a community of hundreds of nuclei and reproduce clonally through large multinucleated spores. It has been suggested that the AMF maintain a stable assemblage of several different genomes during the life cycle, but this genomic organization has been questioned. Here we introduce the 153-Mb haploid genome of Rhizophagus irregularis and its repertoire of 28,232 genes. The observed low level of genome polymorphism (0.43 SNP per kb) is not consistent with the occurrence of multiple, highly diverged genomes. The expansion of mating-related genes suggests the existence of cryptic sex-related processes. A comparison of gene categories confirms that R. irregularis is close to the Mucoromycotina. The AMF obligate biotrophy is not explained by genome erosion or any related loss of metabolic complexity in central metabolism, but is marked by a lack of genes encoding plant cell wall-degrading enzymes and of genes involved in toxin and thiamine synthesis. A battery of mycorrhiza-induced secreted proteins is expressed in symbiotic tissues. The present comprehensive repertoire of R. irregularis genes provides a basis for future research on symbiosis-related mechanisms in Glomeromycota.


Assuntos
Evolução Molecular , Genoma Fúngico/genética , Glomeromycota/genética , Micorrizas/genética , Plantas/microbiologia , Simbiose/genética , Sequência de Bases , Dados de Sequência Molecular , Análise de Sequência de DNA
2.
Proc Natl Acad Sci U S A ; 109(22): 8629-34, 2012 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-22586130

RESUMO

The rhizobium-legume symbiosis has been widely studied as the model of mutualistic evolution and the essential component of sustainable agriculture. Extensive genetic and recent genomic studies have led to the hypothesis that many distinct strategies, regardless of rhizobial phylogeny, contributed to the varied rhizobium-legume symbiosis. We sequenced 26 genomes of Sinorhizobium and Bradyrhizobium nodulating soybean to test this hypothesis. The Bradyrhizobium core genome is disproportionally enriched in lipid and secondary metabolism, whereas several gene clusters known to be involved in osmoprotection and adaptation to alkaline pH are specific to the Sinorhizobium core genome. These features are consistent with biogeographic patterns of these bacteria. Surprisingly, no genes are specifically shared by these soybean microsymbionts compared with other legume microsymbionts. On the other hand, phyletic patterns of 561 known symbiosis genes of rhizobia reflected the species phylogeny of these soybean microsymbionts and other rhizobia. Similar analyses with 887 known functional genes or the whole pan genome of rhizobia revealed that only the phyletic distribution of functional genes was consistent with the species tree of rhizobia. Further evolutionary genetics revealed that recombination dominated the evolution of core genome. Taken together, our results suggested that faithfully vertical genes were rare compared with those with history of recombination including lateral gene transfer, although rhizobial adaptations to symbiotic interactions and other environmental conditions extensively recruited lineage-specific shell genes under direct or indirect control through the speciation process.


Assuntos
Adaptação Fisiológica/genética , Genes Bacterianos/genética , Genômica/métodos , Rhizobium/genética , Proteínas de Bactérias/genética , Bradyrhizobium/classificação , Bradyrhizobium/genética , Bradyrhizobium/fisiologia , China , Análise por Conglomerados , Evolução Molecular , Genoma Bacteriano/genética , Geografia , Interações Hospedeiro-Patógeno , Filogenia , Nodulação , Rhizobium/classificação , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium/classificação , Sinorhizobium/genética , Sinorhizobium/fisiologia , Glycine max/microbiologia , Especificidade da Espécie , Simbiose
3.
BMC Genomics ; 12: 487, 2011 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-21978207

RESUMO

BACKGROUND: Array-based Comparative Genomic Hybridization (CGH) data have been used to infer phylogenetic relationships. However, the reliability of array CGH analysis to determine evolutionary relationships has not been well established. In most CGH work, all species and strains are compared to a single reference species, whose genome was used to design the array. In the accompanying work, we critically evaluated CGH-based phylogeny using simulated competitive hybridization data. This work showed that a limited number of conditions, principally the tree topology and placement of the reference taxon in the tree, had a strong effect on the ability to recover the correct tree topology. Here, we add to our simulation study by testing the use of CGH as a phylogenetic tool with experimental CGH data from competitive hybridizations between N. crassa and other Neurospora species. In the discussion, we add to our empirical study of Neurospora by reanalyzing of data from a previous CGH phylogenetic analysis of the yeast sensu stricto complex. RESULTS: Array ratio data for Neurospora and related species were normalized with loess, robust spline, and linear ratio based methods, and then used to construct Neighbor-Joining and parsimony trees. These trees were compared to published phylogenetic analyses for Neurospora based on multilocus sequence analysis (MLSA). For the Neurospora dataset, the best combination of methods resulted in recovery of the MLSA tree topology less than half the time. Our reanalysis of a yeast dataset found that trees identical to established phylogeny were recovered only by pruning taxa - including the reference taxon - from the analysis. CONCLUSION: Our results indicate that CGH data can be problematic for phylogenetic analysis. Success fluctuates based on the methods utilized to construct the tree and the taxa included. Selective pruning of the taxa improves the results - an impractical approach for normal phylogenetic analysis. From the more successful methods we make suggestions on the normalization and post-normalization methods that work best in estimating genetic distance between taxa.


Assuntos
Hibridização Genômica Comparativa , Neurospora/classificação , Filogenia , Teorema de Bayes , Genoma Fúngico , Tipagem de Sequências Multilocus , Neurospora/genética , Hibridização de Ácido Nucleico
4.
BMC Genomics ; 12: 456, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21936922

RESUMO

BACKGROUND: Comparative Genomic Hybridization (CGH) with DNA microarrays has many biological applications including surveys of copy number changes in tumorogenesis, species detection and identification, and functional genomics studies among related organisms. Array CGH has also been used to infer phylogenetic relatedness among species or strains. Although the use of the entire genome can be seen as a considerable advantage for use in phylogenetic analysis, few such studies have questioned the reliability of array CGH to correctly determine evolutionary relationships. A potential flaw in this application lies in the fact that all comparisons are made to a single reference species. This situation differs from traditional DNA sequence, distance-based phylogenetic analyses where all possible pairwise comparisons are made for the isolates in question. By simulating array data based on the Neurospora crassa genome, we address this potential flaw and other questions regarding array CGH phylogeny. RESULTS: Our simulation data indicates that having a single reference can, in some cases, be a serious limitation when using this technique. Additionally, the tree building process with a single reference is sensitive to many factors including tree topology, choice of tree reconstruction method, and the distance metric used. CONCLUSIONS: Without prior knowledge of the topology and placement of the reference taxon in the topology, the outcome is likely to be wrong and the error undetected. Given these limitations, using CGH to reveal phylogeny based on sequence divergence does not offer a robust alternative to traditional phylogenetic analysis.


Assuntos
Hibridização Genômica Comparativa/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Simulação por Computador , Evolução Molecular , Genoma Fúngico , Neurospora crassa/genética , Filogenia
5.
PLoS Biol ; 8(1): e1000280, 2010 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-20084095

RESUMO

Rhizobia are phylogenetically disparate alpha- and beta-proteobacteria that have achieved the environmentally essential function of fixing atmospheric nitrogen in symbiosis with legumes. Ample evidence indicates that horizontal transfer of symbiotic plasmids/islands has played a crucial role in rhizobia evolution. However, adaptive mechanisms that allow the recipient genomes to express symbiotic traits are unknown. Here, we report on the experimental evolution of a pathogenic Ralstonia solanacearum chimera carrying the symbiotic plasmid of the rhizobium Cupriavidus taiwanensis into Mimosa nodulating and infecting symbionts. Two types of adaptive mutations in the hrpG-controlled virulence pathway of R. solanacearum were identified that are crucial for the transition from pathogenicity towards mutualism. Inactivation of the hrcV structural gene of the type III secretion system allowed nodulation and early infection to take place, whereas inactivation of the master virulence regulator hrpG allowed intracellular infection of nodule cells. Our findings predict that natural selection of adaptive changes in the legume environment following horizontal transfer has been a major driving force in rhizobia evolution and diversification and show the potential of experimental evolution to decipher the mechanisms leading to symbiosis.


Assuntos
Fabaceae/microbiologia , Rhizobium/genética , Simbiose/genética , Adaptação Biológica , Quimera , Evolução Molecular Direcionada , Transferência Genética Horizontal , Fixação de Nitrogênio , Nodulação/genética , Polimorfismo de Nucleotídeo Único , Rhizobium/fisiologia
6.
Nucleic Acids Res ; 33(20): 6469-85, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16287898

RESUMO

To test the inferences of spotted microarray technology against a biochemically well-studied process, we performed transcriptional profiling of conidial germination in the filamentous fungus, Neurospora crassa. We first constructed a 70 base oligomer microarray that assays 3366 predicted genes. To estimate the relative gene expression levels and changes in gene expression during conidial germination, we analyzed a circuit design of competitive hybridizations throughout a time course using a Bayesian analysis of gene expression level. Remarkable consistency of mRNA profiles with previously published northern data was observed. Genes were hierarchically clustered into groups with respect to their expression profiles over the time course of conidial germination. A functional classification database was employed to characterize the global picture of gene expression. Consensus motif searches identified a putative regulatory component associated with genes involved in ribosomal biogenesis. Our transcriptional profiling data correlate well with biochemical and physiological processes associated with conidial germination and will facilitate functional predictions of novel genes in N.crassa and other filamentous ascomycete species. Furthermore, our dataset on conidial germination allowed comparisons to transcriptional mechanisms associated with germination processes of diverse propagules, such as teliospores of the phytopathogenic fungus Ustilago maydis and spores of the social amoeba Dictyostelium discoideum.


Assuntos
Perfilação da Expressão Gênica/métodos , Neurospora crassa/crescimento & desenvolvimento , Neurospora crassa/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Animais , Teorema de Bayes , Northern Blotting , Análise por Conglomerados , Bases de Dados de Ácidos Nucleicos , Dictyostelium/genética , Etiquetas de Sequências Expressas , Genes Fúngicos , Neurospora crassa/fisiologia , Sondas de Oligonucleotídeos , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo , Transcrição Gênica , Ustilago/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA