Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Crit Rev Biotechnol ; : 1-19, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37731336

RESUMO

Shotgun metagenomics is an increasingly cost-effective approach for profiling environmental and host-associated microbial communities. However, due to the complexity of both microbiomes and the molecular techniques required to analyze them, the reliability and representativeness of the results are contingent upon the field, laboratory, and bioinformatic procedures employed. Here, we consider 15 field and laboratory issues that critically impact downstream bioinformatic and statistical data processing, as well as result interpretation, in bacterial shotgun metagenomic studies. The issues we consider encompass intrinsic properties of samples, study design, and laboratory-processing strategies. We identify the links of field and laboratory steps with downstream analytical procedures, explain the means for detecting potential pitfalls, and propose mitigation measures to overcome or minimize their impact in metagenomic studies. We anticipate that our guidelines will assist data scientists in appropriately processing and interpreting their data, while aiding field and laboratory researchers to implement strategies for improving the quality of the generated results.

2.
Gigascience ; 9(11)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33175168

RESUMO

BACKGROUND: Cephalopods represent a rich system for investigating the genetic basis underlying organismal novelties. This diverse group of specialized predators has evolved many adaptations including proteinaceous venom. Of particular interest is the blue-ringed octopus genus (Hapalochlaena), which are the only octopods known to store large quantities of the potent neurotoxin, tetrodotoxin, within their tissues and venom gland. FINDINGS: To reveal genomic correlates of organismal novelties, we conducted a comparative study of 3 octopod genomes, including the Southern blue-ringed octopus (Hapalochlaena maculosa). We present the genome of this species and reveal highly dynamic evolutionary patterns at both non-coding and coding organizational levels. Gene family expansions previously reported in Octopus bimaculoides (e.g., zinc finger and cadherins, both associated with neural functions), as well as formation of novel gene families, dominate the genomic landscape in all octopods. Examination of tissue-specific genes in the posterior salivary gland revealed that expression was dominated by serine proteases in non-tetrodotoxin-bearing octopods, while this family was a minor component in H. maculosa. Moreover, voltage-gated sodium channels in H. maculosa contain a resistance mutation found in pufferfish and garter snakes, which is exclusive to the genus. Analysis of the posterior salivary gland microbiome revealed a diverse array of bacterial species, including genera that can produce tetrodotoxin, suggestive of a possible production source. CONCLUSIONS: We present the first tetrodotoxin-bearing octopod genome H. maculosa, which displays lineage-specific adaptations to tetrodotoxin acquisition. This genome, along with other recently published cephalopod genomes, represents a valuable resource from which future work could advance our understanding of the evolution of genomic novelty in this family.


Assuntos
Octopodiformes , Peçonhas , Adaptação Fisiológica , Animais , Genoma , Humanos , Octopodiformes/genética , Tetrodotoxina/toxicidade
3.
PLoS Biol ; 17(7): e3000166, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31361744

RESUMO

While sequencing ancient DNA (aDNA) from archaeological material is now commonplace, very few attempts to sequence ancient transcriptomes have been made, even from typically stable deposition environments such as permafrost. This is presumably due to assumptions that RNA completely degrades relatively quickly, particularly when dealing with autolytic, nuclease-rich mammalian tissues. However, given the recent successes in sequencing ancient RNA (aRNA) from various sources including plants and animals, we suspect that these assumptions may be incorrect or exaggerated. To challenge the underlying dogma, we generated shotgun RNA data from sources that might normally be dismissed for such study. Here, we present aRNA data generated from two historical wolf skins, and permafrost-preserved liver tissue of a 14,300-year-old Pleistocene canid. Not only is the latter the oldest RNA ever to be sequenced, but it also shows evidence of biologically relevant tissue specificity and close similarity to equivalent data derived from modern-day control tissue. Other hallmarks of RNA sequencing (RNA-seq) data such as exon-exon junction presence and high endogenous ribosomal RNA (rRNA) content confirms our data's authenticity. By performing independent technical library replicates using two high-throughput sequencing platforms, we show not only that aRNA can survive for extended periods in mammalian tissues but also that it has potential for tissue identification. aRNA also has possible further potential, such as identifying in vivo genome activity and adaptation, when sequenced using this technology.


Assuntos
Canidae/genética , Fósseis , Fígado/metabolismo , Especificidade de Órgãos/genética , RNA/genética , Transcriptoma/genética , Animais , Canidae/classificação , Cartilagem/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pergelissolo/química , RNA/metabolismo , Análise de Sequência de RNA/métodos , Pele/metabolismo , Especificidade da Espécie , Lobos/genética
4.
Mol Ecol ; 26(4): 969-971, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28239926

RESUMO

I bought a robotic vacuum cleaner this summer and set it to work. Although my initial expectations were not high, my robot (christened Buddy) finished its cleaning cycle, and then insistently demanded that I empty its dust collection box. As I took the box out, my jaw dropped. I live in a modern house, we don't have pets, and I like to think that I keep it reasonably dust free. But, there was much dust in that box. And when I ran it again 2 days later, the same thing happened. And indeed, every 2 days, Buddy dutifully goes to work, and sucks up a similarly impressive quantity. It's remarkable, and naturally begs the question of where it all comes from? Some is externally derived, entering the house with us or through open windows. Some is clearly fibres shed from clothes, furniture etc. Then there's the skin cells and hair we shed. But at least part is derived from the host of smaller organisms that live in and around our homes, many of which are arthropods (Butte & Heinzow ). I suspect almost all readers are aware that some smaller animals live in our houses - even those who live in the modern urban houses will have occasionally encountered the odd drosophila, silverfish or spider. But I suspect that prior to reading Madden et al.'s article in this issue of Molecular Ecology (Madden et al. ), few of you will have appreciated the true diversity, which, it turns out, is huge.


Assuntos
Artrópodes , Poeira/análise , Alérgenos , Animais , DNA , Estados Unidos
5.
Sci Rep ; 4: 7104, 2014 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-25429530

RESUMO

Milk is a major food of global economic importance, and its consumption is regarded as a classic example of gene-culture evolution. Humans have exploited animal milk as a food resource for at least 8500 years, but the origins, spread, and scale of dairying remain poorly understood. Indirect lines of evidence, such as lipid isotopic ratios of pottery residues, faunal mortality profiles, and lactase persistence allele frequencies, provide a partial picture of this process; however, in order to understand how, where, and when humans consumed milk products, it is necessary to link evidence of consumption directly to individuals and their dairy livestock. Here we report the first direct evidence of milk consumption, the whey protein ß-lactoglobulin (BLG), preserved in human dental calculus from the Bronze Age (ca. 3000 BCE) to the present day. Using protein tandem mass spectrometry, we demonstrate that BLG is a species-specific biomarker of dairy consumption, and we identify individuals consuming cattle, sheep, and goat milk products in the archaeological record. We then apply this method to human dental calculus from Greenland's medieval Norse colonies, and report a decline of this biomarker leading up to the abandonment of the Norse Greenland colonies in the 15(th) century CE.


Assuntos
Cálculos Dentários/metabolismo , Leite/metabolismo , Animais , Arqueologia , Evolução Biológica , Bovinos , Laticínios , Humanos , Lactoglobulinas/metabolismo , Ovinos , Espectrometria de Massas em Tandem
6.
Heredity (Edinb) ; 113(5): 432-42, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24865601

RESUMO

Processes leading to speciation in oceanic environments without obvious physical barriers remain poorly known. European and American eel (Anguilla anguilla and A. rostrata) spawn in partial sympatry in the Sargasso Sea. Larvae are advected by the Gulf Stream and other currents towards the European/North African and North American coasts, respectively. We analyzed 104 mitogenomes from the two species along with mitogenomes of other Anguilla and outgroup species. We estimated divergence time between the two species to identify major events involved in speciation. We also considered two previously stated hypotheses: one where the ancestral species was present in only one continent but was advected across the Atlantic by ocean current changes and another where population declines during Pleistocene glaciations led to increasing vicariance, facilitating speciation. Divergence time was estimated to ∼3.38 Mya, coinciding with the closure of the Panama Gateway that led to reinforcement of the Gulf Stream. This could have advected larvae towards European/North African coasts, in which case American eel would be expected to be the ancestral species. This scenario could, however, not be unequivocally confirmed by analyses of dN/dS, nucleotide diversity and effective population size estimates. Extended bayesian skyline plots showed fluctuations of effective population sizes and declines during glaciations, and thus also lending support to the importance of vicariance during speciation. There was evidence for positive selection at the ATP6 and possibly ND5 genes, indicating a role in speciation. The findings suggest an important role of ocean current changes in speciation of marine organisms.


Assuntos
Anguilla/genética , Especiação Genética , Genoma Mitocondrial , Anguilla/classificação , Animais , Oceano Atlântico , Modelos Genéticos , Dados de Sequência Molecular , Densidade Demográfica , Seleção Genética , Análise de Sequência de DNA , Movimentos da Água
7.
Mol Ecol ; 21(15): 3647-55, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22507540

RESUMO

Ecosystems across the globe are threatened by climate change and human activities. New rapid survey approaches for monitoring biodiversity would greatly advance assessment and understanding of these threats. Taking advantage of next-generation DNA sequencing, we tested an approach we call metabarcoding: high-throughput and simultaneous taxa identification based on a very short (usually <100 base pairs) but informative DNA fragment. Short DNA fragments allow the use of degraded DNA from environmental samples. All analyses included amplification using plant-specific versatile primers, sequencing and estimation of taxonomic diversity. We tested in three steps whether degraded DNA from dead material in soil has the potential of efficiently assessing biodiversity in different biomes. First, soil DNA from eight boreal plant communities located in two different vegetation types (meadow and heath) was amplified. Plant diversity detected from boreal soil was highly consistent with plant taxonomic and growth form diversity estimated from conventional above-ground surveys. Second, we assessed DNA persistence using samples from formerly cultivated soils in temperate environments. We found that the number of crop DNA sequences retrieved strongly varied with years since last cultivation, and crop sequences were absent from nearby, uncultivated plots. Third, we assessed the universal applicability of DNA metabarcoding using soil samples from tropical environments: a large proportion of species and families from the study site were efficiently recovered. The results open unprecedented opportunities for large-scale DNA-based biodiversity studies across a range of taxonomic groups using standardized metabarcoding approaches.


Assuntos
Biodiversidade , DNA de Plantas/análise , Plantas/classificação , Solo/análise , Clima , Código de Barras de DNA Taxonômico , Desenvolvimento Vegetal , Plantas/genética
8.
BMC Evol Biol ; 12: 35, 2012 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22429664

RESUMO

BACKGROUND: House mice (Mus musculus) are commensals of humans and therefore their phylogeography can reflect human colonization and settlement patterns. Previous studies have linked the distribution of house mouse mitochondrial (mt) DNA clades to areas formerly occupied by the Norwegian Vikings in Norway and the British Isles. Norwegian Viking activity also extended further westwards in the North Atlantic with the settlement of Iceland, short-lived colonies in Greenland and a fleeting colony in Newfoundland in 1000 AD. Here we investigate whether house mouse mtDNA sequences reflect human history in these other regions as well. RESULTS: House mice samples from Iceland, whether from archaeological Viking Age material or from modern-day specimens, had an identical mtDNA haplotype to the clade previously linked with Norwegian Vikings. From mtDNA and microsatellite data, the modern-day Icelandic mice also share the low genetic diversity shown by their human hosts on Iceland. Viking Age mice from Greenland had an mtDNA haplotype deriving from the Icelandic haplotype, but the modern-day Greenlandic mice belong to an entirely different mtDNA clade. We found no genetic association between modern Newfoundland mice and the Icelandic/ancient Greenlandic mice (no ancient Newfoundland mice were available). The modern day Icelandic and Newfoundland mice belong to the subspecies M. m. domesticus, the Greenlandic mice to M. m. musculus. CONCLUSIONS: In the North Atlantic region, human settlement history over a thousand years is reflected remarkably by the mtDNA phylogeny of house mice. In Iceland, the mtDNA data show the arrival and continuity of the house mouse population to the present day, while in Greenland the data suggest the arrival, subsequent extinction and recolonization of house mice--in both places mirroring the history of the European human host populations. If house mice arrived in Newfoundland with the Viking settlers at all, then, like the humans, their presence was also fleeting and left no genetic trace. The continuity of mtDNA haplotype in Iceland over 1000 years illustrates that mtDNA can retain the signature of the ancestral house mouse founders. We also show that, in terms of genetic variability, house mouse populations may also track their host human populations.


Assuntos
Migração Animal , DNA Mitocondrial/genética , Animais , Emigração e Imigração/história , Variação Genética , Groenlândia , História do Século XV , História Antiga , História Medieval , Humanos , Islândia , Camundongos , Repetições de Microssatélites/genética , Terra Nova e Labrador , Filogenia , Especificidade da Espécie
9.
Mol Ecol ; 20(20): 4195-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24137623

RESUMO

Whether as the ancient Egyptian crocodile-god Sobek, a terrifying predator of African waterways, or simply as a premium handbag leather, the Nile crocodile (Crocodylus niloticus) has long held the fascination of mankind. Despite 200 years of study, however, uncertainty remains as to its taxonomy. While resolving such issues are key to understanding the origins and biogeography of the so-called true crocodiles of genus Crocodylus, given widespread ongoing range contraction, such issues are paramount for design of future conservation strategies. In this issue of Molecular Ecology, Hekkala et al. (2011) apply analysis of modern, historic and ancient DNA (aDNA) to the questions, with far-reaching implications. First they demonstrate that, as currently described, the Nile crocodile is paraphyletic, with individuals from the east and western clades separated by a number of New World crocodile species. The consequences of this finding are as important for conservation efforts as for their impact on crocodile taxonomy. Furthermore, they strike at the heart of the long-standing debate over whether aDNA analysis of ancient Egyptian mummies is scientifically sound.


Assuntos
Jacarés e Crocodilos/genética , DNA/genética , Evolução Molecular , Especiação Genética , Animais , Humanos
11.
Am J Phys Anthropol ; 135(2): 206-15, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18046774

RESUMO

The Roman Iron-Age (0-400 AD) in Southern Scandinavia was a formative period, where the society changed from archaic chiefdoms to a true state formation, and the population composition has likely changed in this period due to immigrants from Middle Scandinavia. We have analyzed mtDNA from 22 individuals from two different types of settlements, Bøgebjerggård and Skovgaarde, in Southern Denmark. Bøgebjerggård (ca. 0 AD) represents the lowest level of free, but poor farmers, whereas Skovgaarde 8 km to the east (ca. 200-270 AD) represents the highest level of the society. Reproducible results were obtained for 18 subjects harboring 17 different haplotypes all compatible (in their character states) with the phylogenetic tree drawn from present day populations of Europe. This indicates that the South Scandinavian Roman Iron-Age population was as diverse as Europeans are today. Several of the haplogroups (R0a, U2, I) observed in Bøgebjerggård are rare in present day Scandinavians. Most significantly, R0a, harbored by a male, is a haplogroup frequent in East Africa and Arabia but virtually absent among modern Northern Europeans. We suggest that this subject was a soldier or a slave, or a descendant of a female slave, from Roman Legions stationed a few hundred kilometers to the south. In contrast, the haplotype distribution in the rich Skovgaarde shows similarity to that observed for modern Scandinavians, and the Bøgebjerggård and Skovgaarde population samples differ significantly (P approximately 0.01). Skovgaarde may represent a new upper-class formed by migrants from Middle Scandinavia bringing with them Scandinavian haplogroups.


Assuntos
DNA Mitocondrial/genética , Evolução Molecular , Variação Genética , Genética Populacional , População Branca/genética , Demografia , Dinamarca/etnologia , Feminino , Haplótipos/genética , Humanos , Masculino , Paleontologia , Filogenia , Classe Social , Fatores Socioeconômicos
12.
Biol Lett ; 3(5): 550-3, 2007 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-17666375

RESUMO

We analysed the historical genetic diversity of human populations in Europe at the mtDNA control region for 48 ancient Britons who lived between ca AD 300 and 1000, and compared these with 6320 modern mtDNA genotypes from England and across Europe and the Middle East. We found that the historical sample shows greater genetic diversity than for modern England and other modern populations, indicating the loss of diversity over the last millennium. The pattern of haplotypic diversity was clearly European in the ancient sample, representing each of the modern haplogroups. There was also increased representation of one of the ancient haplotypes in modern populations. We consider these results in the context of possible selection or stochastic processes.


Assuntos
Arqueologia , DNA Mitocondrial/genética , Variação Genética , Inglaterra , Genótipo , Humanos
13.
Forensic Sci Int ; 156(2-3): 201-7, 2006 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-15922527

RESUMO

We have assessed the histological preservation of naturally degraded human hair shafts, and then assayed each for levels of amplifiable mitochondrial DNA and damage-associated DNA miscoding lesions. The results indicate that as sample histology is altered (i.e. as hairs degrade) levels of amplifiable mitochondrial DNA decrease, but no correlation is seen between histology and absolute levels of mitochondrial DNA miscoding lesions. Nevertheless, amplifiable mitochondrial DNA could be recovered across the complete range of the histological preservation spectrum. However, when template copy number is taken into consideration, a correlation of miscoding lesions with histology is again apparent. These relationships indicate that a potential route for the generation of misleading mitochondrial sequence data exists in samples of poor histology. Therefore, we argue that in the absence of molecular cloning, the histological screening of hair may be necessary in order to confirm the reliability of mitochondrial DNA sequences amplified from hair, and thus represents a useful tool in forensic mitochondrial DNA analyses.


Assuntos
Dano ao DNA , Impressões Digitais de DNA/métodos , DNA Mitocondrial/isolamento & purificação , Cabelo/química , Animais , Clonagem Molecular , Humanos , Mudanças Depois da Morte , Análise de Sequência de DNA , Suínos
14.
Mol Biol Evol ; 23(1): 152-61, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16151183

RESUMO

Some of the transitional periods of Britain during the first millennium A.D. are traditionally associated with the movement of people from continental Europe, composed largely of invading armies (e.g., the Roman, Saxon, and Viking invasions). However, the extent to which these were migrations (as opposed to cultural exchange) remains controversial. We investigated the history of migration by women by amplifying mitochondrial DNA (mtDNA) from ancient Britons who lived between approximately A.D. 300-1,000 and compared these with 3,549 modern mtDNA database genotypes from England, Europe, and the Middle East. The objective was to assess the dynamics of the historical population composition by comparing genotypes in a temporal context. Towards this objective we test and calibrate the use of rho statistics to identify relationships between founder and source populations. We find evidence for shared ancestry between the earliest sites (predating Viking invasions) with modern populations across the north of Europe from Norway to Estonia, possibly reflecting common ancestors dating back to the last glacial epoch. This is in contrast with a late Saxon site in Norwich, where the genetic signature is consistent with more recent immigrations from the south, possibly as part of the Saxon invasions.


Assuntos
DNA Mitocondrial/genética , Emigração e Imigração/história , Evolução Molecular , Filogenia , Primers do DNA , Feminino , Efeito Fundador , Genótipo , Geografia , História Medieval , Humanos , Análise de Sequência de DNA , Reino Unido
15.
Proc Biol Sci ; 271(1542): 941-7, 2004 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-15255049

RESUMO

This study helps to clarify the debate on the Western and Eastern genetic influences in Central Asia. Thirty-six skeletal remains from Kazakhstan (Central Asia), excavated from different sites dating between the fifteenth century BC to the fifth century AD, have been analysed for the hypervariable control region (HVR-I) and haplogroup diagnostic single nucleotide polymorphisms (SNPs) of the mitochondrial DNA genome. Standard authentication criteria for ancient DNA studies, including multiple extractions, cloning of PCR products and independent replication, have been followed. The distribution of east and west Eurasian lineages through time in the region is concordant with the available archaeological information: prior to the thirteenth-seventh century BC, all Kazakh samples belong to European lineages; while later an arrival of east Eurasian sequences that coexisted with the previous west Eurasian genetic substratum can be detected. The presence of an ancient genetic substratum of European origin in West Asia may be related to the discovery of ancient mummies with European features in Xinjiang and to the existence of an extinct Indo-European language, Tocharian. This study demonstrates the usefulness of the ancient DNA in unravelling complex patterns of past human migrations so as to help decipher the origin of present-day admixed populations.


Assuntos
DNA Mitocondrial/genética , Emigração e Imigração/história , Fósseis , História Antiga , Primers do DNA , Geografia , Haplótipos/genética , Humanos , Cazaquistão , Polimorfismo de Fragmento de Restrição , Polimorfismo de Nucleotídeo Único/genética , Dinâmica Populacional , Análise de Sequência de DNA
16.
Am J Phys Anthropol ; 121(2): 97-108, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12740952

RESUMO

To assess the genetic affinities of extinct Ciboneys (also called Guanajuatabeys) from Cuba, 47 pre-Columbian skeletal samples belonging to this group were analyzed using ancient DNA techniques. At the time of European contact, the center and east of Cuba were occupied by agriculturalist Taino groups, while the west was mainly inhabited by Ciboneys, hunter-gatherers who have traditionally been considered a relic population descending from the initial colonization of the Caribbean. The mtDNA hypervariable region I (HVR-I) and haplogroup-specific markers were amplified and sequenced in 15 specimens using overlapping fragments; amplification from second extractions from the same sample, independent replication in different laboratories, and cloning of some PCR products support the authenticity of the sequences. Three of the five major mtDNA Amerindian lineages (A, C, and D) are present in the sample analyzed, in frequencies of 0.07, 0.60, and 0.33, respectively. Different phylogenetic analyses seem to suggest that the Caribbean most likely was populated from South America, although the data are still inconclusive, and Central American influences cannot be discarded. Our hypothesis is that the colonization of the Caribbean mainly took place in successive migration movements that emanated from the same area in South America, around the Lower Orinoco Valley: the first wave consisted of hunter-gatherer groups (ancestors of the Ciboneys), a subsequent wave of agriculturalists (ancestors of the Tainos), and a latter one of nomadic Carib warriors. However, further genetic studies are needed to confirm this scenario.


Assuntos
DNA Mitocondrial/genética , Emigração e Imigração/história , Indígenas Norte-Americanos/genética , Osso e Ossos/química , Região do Caribe , Cuba , DNA Mitocondrial/isolamento & purificação , Variação Genética/genética , Vetores Genéticos , Haplótipos/genética , História Antiga , Humanos , Indígenas Norte-Americanos/história , Análise de Sequência de DNA , Dente/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA