Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pathol Res Pract ; 261: 155480, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39088874

RESUMO

Cutaneous fungal infections are one of the most common skin conditions, hence, the burden of determining fungal elements upon microscopic examination with periodic acid-Schiff (PAS) and Gomori methenamine silver (GMS) stains, is very time consuming. Despite some morphological variability posing challenges to training artificial intelligence (AI)-based solutions, these structures are favored potential targets, enabling the recruitment of promising AI-based technologies. Herein, we present a novel AI solution for identifying skin fungal infections, potentially providing a decision support system for pathologists. Skin biopsies of patients diagnosed with a cutaneous fungal infection at the Sheba Medical Center, Israel between 2014 and 2023, were used. Samples were stained with PAS and GMS and digitized by the Philips IntelliSite scanner. DeePathology® STUDIO fungal elements were annotated and deemed as ground truth data after an overall revision by two specialist pathologists. Subsequently, they were used to create an AI-based solution, which has been further validated in other regions of interests. The study participants were divided into two cohorts. In the first cohort, the overall sensitivity of the algorithm was 0.8, specificity 0.97, F1 score 0.78; in the second, the overall sensitivity of the algorithm was 0.93, specificity 0.99, F1 score 0.95. The results obtained are encouraging as proof of concept for an AI-based fungi detection algorithm. DeePathology® STUDIO can be employed as a decision support system for pathologists when diagnosing a cutaneous fungal infection using PAS and GMS stains, thereby, saving time and money.


Assuntos
Inteligência Artificial , Dermatomicoses , Humanos , Dermatomicoses/diagnóstico , Dermatomicoses/microbiologia , Dermatomicoses/patologia , Sistemas de Apoio a Decisões Clínicas , Feminino , Biópsia
2.
J Imaging ; 8(8)2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-36005456

RESUMO

Breast cancer is the most common malignancy in women worldwide, and is responsible for more than half a million deaths each year. The appropriate therapy depends on the evaluation of the expression of various biomarkers, such as the human epidermal growth factor receptor 2 (HER2) transmembrane protein, through specialized techniques, such as immunohistochemistry or in situ hybridization. In this work, we present the HER2 on hematoxylin and eosin (HEROHE) challenge, a parallel event of the 16th European Congress on Digital Pathology, which aimed to predict the HER2 status in breast cancer based only on hematoxylin-eosin-stained tissue samples, thus avoiding specialized techniques. The challenge consisted of a large, annotated, whole-slide images dataset (509), specifically collected for the challenge. Models for predicting HER2 status were presented by 21 teams worldwide. The best-performing models are presented by detailing the network architectures and key parameters. Methods are compared and approaches, core methodologies, and software choices contrasted. Different evaluation metrics are discussed, as well as the performance of the presented models for each of these metrics. Potential differences in ranking that would result from different choices of evaluation metrics highlight the need for careful consideration at the time of their selection, as the results show that some metrics may misrepresent the true potential of a model to solve the problem for which it was developed. The HEROHE dataset remains publicly available to promote advances in the field of computational pathology.

3.
BMC Gastroenterol ; 20(1): 417, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33308189

RESUMO

BACKGROUND: Helicobacter pylori, a 2 × 1 µm spiral-shaped bacterium, is the most common risk factor for gastric cancer worldwide. Clinically, patients presenting with symptoms of gastritis, routinely undergo gastric biopsies. The following histo-morphological evaluation dictates therapeutic decisions, where antibiotics are used for H. pylori eradication. There is a strong rational to accelerate the detection process of H. pylori on histological specimens, using novel technologies, such as deep learning. METHODS: We designed a deep-learning-based decision support algorithm that can be applied on regular whole slide images of gastric biopsies. In detail, we can detect H. pylori both on Giemsa- and regular H&E stained whole slide images. RESULTS: With the help of our decision support algorithm, we show an increased sensitivity in a subset of 87 cases that underwent additional PCR- and immunohistochemical testing to define a sensitive ground truth of HP presence. For Giemsa stained sections, the decision support algorithm achieved a sensitivity of 100% compared to 68.4% (microscopic diagnosis), with a tolerable specificity of 66.2% for the decision support algorithm compared to 92.6 (microscopic diagnosis). CONCLUSION: Together, we provide the first evidence of a decision support algorithm proving as a sensitive screening option for H. pylori that can potentially aid pathologists to accurately diagnose H. pylori presence on gastric biopsies.


Assuntos
Aprendizado Profundo , Gastrite , Infecções por Helicobacter , Helicobacter pylori , Biópsia , Mucosa Gástrica , Gastrite/diagnóstico , Infecções por Helicobacter/diagnóstico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA