Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Nat Prod ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747744

RESUMO

Cyclotides are cysteine-rich plant-derived peptides composed of 28-37 amino acids with a head-to-tail cyclic backbone and a knotted arrangement of three conserved disulfide bonds. Their beneficial biophysical properties make them promising molecules for pharmaceutical and agricultural applications. The Violaceae plant family is the major cyclotide-producing family, and to date, every examined plant from this family has been found to contain cyclotides. The presence of cyclotides in Viola communis was inferred by mass spectroscopy previously, but their sequences and properties had yet to be explored. In this study, the occurrence of cyclotides in this plant was investigated using proteomics and transcriptomics. Twenty cyclotides were identified at the peptide level, including two new members from the bracelet (Vcom1) and Möbius (Vcom2) subfamilies. Structural analysis of these newly identified peptides demonstrated a similar fold compared with cyclotides from the same respective subfamilies. Biological assays of Vcom1 and Vcom2 revealed them to be cytotoxic to Sf9 insect cell lines, with Vcom1 demonstrating higher potency than Vcom2. The results suggest that they could be further explored as insecticidal agents and confirm earlier general findings that bracelet cyclotides have more potent insecticidal activity than their Möbius relatives. Seven new cyclotide-like sequences were observed in the transcriptome of V. communis, highlighting the Violaceae as a rich source for new cyclotides with potential insecticidal activity. An analysis of sequences flanking the cyclotide domain in the various precursors from V. communis and other Violaceae plants revealed new insights into cyclotide processing and suggested the possibility of two alternative classes of N-terminal processing enzymes for cyclotide biosynthesis.

2.
J Nat Prod ; 86(5): 1222-1229, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37099442

RESUMO

Cyclotides are a unique family of stable and cyclic mini-proteins found in plants that have nematicidal and anthelmintic activities. They are distributed across the Rubiaceae, Violaceae, Fabaceae, Cucurbitaceae, and Solanaceae plant families, where they are posited to act as protective agents against pests. In this study, we tested the nematicidal properties of extracts from four major cyclotide-producing plants, Oldenlandia affinis, Clitoria ternatea, Viola odorata, and Hybanthus enneaspermus, against the free-living model nematode Caenorhabditis elegans. We evaluated the nematicidal activity of the cyclotides kalata B1, cycloviolacin O2, and hyen D present in these extracts and found them to be active against the larvae of C. elegans. Both the plant extracts and isolated cyclotides exerted dose-dependent toxicity on the first-stage larvae of C. elegans. Isolated cyclotides caused death or damage upon interacting with the worms' mouth, pharynx, and midgut or membrane. Cycloviolacin O2 and hyen D produced bubble-like structures around the C. elegans membrane, termed blebs, implicating membrane disruption causing toxicity and death. All tested cyclotides lost their toxicity when the hydrophobic patches present on them were disrupted via a single-point mutation. The present results provide a facile assay design to measure and explore the nematicidal activities of plant extracts and purified cyclotides on C. elegans.


Assuntos
Ciclotídeos , Fabaceae , Nematoides , Violaceae , Animais , Antinematódeos/farmacologia , Caenorhabditis elegans , Ciclotídeos/farmacologia , Ciclotídeos/química , Fabaceae/química , Extratos Vegetais/química , Proteínas de Plantas/química
3.
Transgenic Res ; 32(1-2): 121-133, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36930229

RESUMO

Multiple sclerosis (MS) is a debilitating disease that requires prolonged treatment with often severe side effects. One experimental MS therapeutic currently under development is a single amino acid mutant of a plant peptide termed kalata B1, of the cyclotide family. Like all cyclotides, the therapeutic candidate [T20K]kB1 is highly stable as it contains a cyclic backbone that is cross-linked by three disulfide bonds in a knot-like structure. This stability is much sought after for peptide drugs, which despite exquisite selectivity for their targets, are prone to rapid degradation in human serum. In preliminary investigations, it was found that [T20K]kB1 retains oral activity in experimental autoimmune encephalomyelitis, a model of MS in mice, thus opening up opportunities for oral dosing of the peptide. Although [T20K]kB1 can be synthetically produced, a recombinant production system provides advantages, specifically for reduced scale-up costs and reductions in chemical waste. In this study, we demonstrate the capacity of the Australian native Nicotiana benthamiana plant to produce a structurally identical [T20K]kB1 to that of the synthetic peptide. By optimizing the co-expressed cyclizing enzyme, precursor peptide arrangements, and transgene regulatory regions, we demonstrate a [T20K]kB1 yield in crude peptide extracts of ~ 0.3 mg/g dry mass) in whole plants and close to 1.0 mg/g dry mass in isolated infiltrated leaves. With large-scale plant production facilities coming on-line across the world, the sustainable and cost-effective production of cyclotide-based therapeutics is now within reach.


Assuntos
Ciclotídeos , Esclerose Múltipla , Camundongos , Humanos , Animais , Ciclotídeos/genética , Ciclotídeos/química , Ciclotídeos/metabolismo , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/genética , Austrália , Nicotiana/genética , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo
4.
J Biol Chem ; 298(10): 102413, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36007611

RESUMO

Cyclotides and acyclic versions of cyclotides (acyclotides) are peptides involved in plant defense. These peptides contain a cystine knot motif formed by three interlocked disulfide bonds, with the main difference between the two classes being the presence or absence of a cyclic backbone, respectively. The insecticidal activity of cyclotides is well documented, but no study to date explores the insecticidal activity of acyclotides. Here, we present the first in vivo evaluation of the insecticidal activity of acyclotides from Rinorea bengalensis on the vinegar fly Drosophila melanogaster. Of a group of structurally comparable acyclotides, ribe 31 showed the most potent toxicity when fed to D. melanogaster. We screened a range of acyclotides and cyclotides and found their toxicity toward human red blood cells was substantially lower than toward insect cells, highlighting their selectivity and potential for use as bioinsecticides. Our confocal microscopy experiments indicated their cytotoxicity is likely mediated via membrane disruption. Furthermore, our surface plasmon resonance studies suggested ribe 31 preferentially binds to membranes containing phospholipids with phosphatidyl-ethanolamine headgroups. Despite having an acyclic backbone, we determined the three-dimensional NMR solution structure of ribe 31 is similar to that of cyclotides. In summary, our results suggest that, with further optimization, ribe 31 could have applications as an insecticide due to its potent in vivo activity against D. melanogaster. More broadly, this work advances the field by demonstrating that acyclotides are more common than previously thought, have potent insecticidal activity, and have the advantage of potentially being more easily manufactured than cyclotides.


Assuntos
Ciclotídeos , Drosophila melanogaster , Inseticidas , Proteínas de Plantas , Violaceae , Animais , Humanos , Sequência de Aminoácidos , Ciclotídeos/química , Ciclotídeos/isolamento & purificação , Ciclotídeos/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Inseticidas/química , Inseticidas/isolamento & purificação , Inseticidas/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Violaceae/química , Eritrócitos/efeitos dos fármacos
5.
J Biol Chem ; 298(8): 102218, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35780839

RESUMO

The stinging hairs of plants from the family Urticaceae inject compounds that inflict pain to deter herbivores. The sting of the New Zealand tree nettle (Urtica ferox) is among the most painful of these and can cause systemic symptoms that can even be life-threatening; however, the molecular species effecting this response have not been elucidated. Here we reveal that two classes of peptide toxin are responsible for the symptoms of U. ferox stings: Δ-Uf1a is a cytotoxic thionin that causes pain via disruption of cell membranes, while ß/δ-Uf2a defines a new class of neurotoxin that causes pain and systemic symptoms via modulation of voltage-gated sodium (NaV) channels. We demonstrate using whole-cell patch-clamp electrophysiology experiments that ß/δ-Uf2a is a potent modulator of human NaV1.5 (EC50: 55 nM), NaV1.6 (EC50: 0.86 nM), and NaV1.7 (EC50: 208 nM), where it shifts the activation threshold to more negative potentials and slows fast inactivation. We further found that both toxin classes are widespread among members of the Urticeae tribe within Urticaceae, suggesting that they are likely to be pain-causing agents underlying the stings of other Urtica species. Comparative analysis of nettles of Urtica, and the recently described pain-causing peptides from nettles of another genus, Dendrocnide, indicates that members of tribe Urticeae have developed a diverse arsenal of pain-causing peptides.


Assuntos
Neurotoxinas , Peptídeos , Toxinas Biológicas , Urticaceae , Humanos , Neurotoxinas/química , Dor , Técnicas de Patch-Clamp , Peptídeos/química , Peptídeos/toxicidade , Toxinas Biológicas/química , Urticaceae/química , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos
6.
J Exp Bot ; 73(18): 6103-6114, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35724659

RESUMO

Plant molecular farming aims to provide a green, flexible, and rapid alternative to conventional recombinant expression systems, capable of producing complex biologics such as enzymes, vaccines, and antibodies. Historically, the recombinant expression of therapeutic peptides in plants has proven difficult, largely due to their small size and instability. However, some plant species harbour the capacity for peptide backbone cyclization, a feature inherent in stable therapeutic peptides. One obstacle to realizing the potential of plant-based therapeutic peptide production is the proteolysis of the precursor before it is matured into its final stabilized form. Here we demonstrate the rational domestication of Nicotiana benthamiana within two generations to endow this plant molecular farming host with an expanded repertoire of peptide sequence space. The in planta production of molecules including an insecticidal peptide, a prostate cancer therapeutic lead, and an orally active analgesic is demonstrated.


Assuntos
Produtos Biológicos , Domesticação , Proteínas de Plantas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Plantas/metabolismo , Peptídeos/metabolismo , Produtos Biológicos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Phytochemistry ; 195: 113053, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34923360

RESUMO

Cyclotides are a class of ribosomally-synthesized plant peptides that function in plants as a defense against insects and fungal pathogens. Their unique structure comprises a cyclized peptide backbone threaded by three disulfide bonds, that imparts structural stability, a desirable quality for peptide-based therapeutics or insecticides. Producing these peptides synthetically is challenging due to the amount of chemical waste produced and inefficiency of folding certain cyclotides. Thus, it is desirable to develop a means to access cyclotide biosynthesis in their native hosts, cultured in defined conditions, at both laboratory and commercial scale. Here we developed suspension cell cultures from two species previously unexplored for cyclotide production in suspension cells, Clitoria ternatea L., Hybanthus enneaspermus F. Muell., as well as with Oldenlandia affinis (Roem. & Schult.) DC., a species reported previously to accumulate cyclotides in cell suspensions. We assessed the growth rate, cyclotide production and gene expression for the various species. We found that while many cyclotides had reduced expression in Oldenlandia affinis suspension cells when compared to plant organs, those in Clitoria ternatea and Hybanthus enneaspermus maintained or increased expression levels. The cyclotides that continued to be expressed in suspension cultures shared similar sequence and biophysical properties as a group, regardless of phylogenetic origin of the host. Of particular interest was the discovery of inducibility by NaCl of cyclotide expression in O. affinis, cycloviolacin O2 expression in O. affinis, and the scale up of cycloviolacin O2 production in H. enneaspermus. Together the results presented here highlight the utility of plant cell suspensions as modalities to produce macrocyclic peptides.


Assuntos
Ciclotídeos , Sequência de Aminoácidos , Ciclotídeos/genética , Agricultura Molecular , Filogenia , Células Vegetais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Suspensões
8.
J Nat Prod ; 84(2): 395-407, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33570395

RESUMO

Cyclotides are plant-derived peptides that have attracted interest as biocides and scaffolds for the development of stable peptide therapeutics. Cyclotides are characterized by their cyclic backbone and cystine knot framework, which engenders them with remarkably high stability. This study reports the cystine knot-related peptidome of Rinorea bengalensis, a small rainforest tree in the Violaceae family that is distributed from Australia westward to India. Surprisingly, many more acyclic knotted peptides (acyclotides) were discovered than cyclic counterparts (cyclotides), with 32 acyclotides and 1 cyclotide sequenced using combined transcriptome and proteomic analyses. Nine acyclotides were isolated and screened against a panel of mammalian cell lines, showing they had the cytotoxic properties normally associated with cyclotide-like peptides. NMR analysis of the acyclotide ribes 21 and 22 and the cyclotide ribe 33 confirmed that these peptides contained the cystine knot structural motif. The bracelet-subfamily cyclotide ribe 33 was amenable to chemical synthesis in reasonable yield, an achievement that has long eluded previous attempts to synthetically produce bracelet cyclotides. Accordingly, ribe 33 represents an exciting new bracelet cyclotide scaffold that can be subject to chemical modification for future molecular engineering applications.


Assuntos
Ciclotídeos/síntese química , Cistina/química , Violaceae/química , Linhagem Celular Tumoral , Ciclotídeos/química , Eritrócitos/efeitos dos fármacos , Humanos , Extratos Vegetais/química , Proteínas de Plantas/química , Proteômica , Queensland , Transcriptoma
9.
J Med Chem ; 64(5): 2523-2533, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33356222

RESUMO

Peptides are regarded as promising next-generation therapeutics. However, an analysis of over 1000 bioactive peptide candidates suggests that many have underdeveloped affinities and could benefit from cyclization using a bridging linker sequence. Until now, the primary focus has been on the use of inert peptide linkers. Here, we show that affinity can be significantly improved by enriching the linker with functional amino acids. We engineered a peptide inhibitor of PCSK9, a target for clinical management of hypercholesterolemia, to demonstrate this concept. Cyclization linker optimization from library screening produced a cyclic peptide with ∼100-fold improved activity over the parent peptide and efficiently restored low-density lipoprotein (LDL) receptor levels and cleared extracellular LDL. The linker forms favorable interactions with PCSK9 as evidenced by thermodynamics, structure-activity relationship (SAR), NMR, and molecular dynamics (MD) studies. This PCSK9 inhibitor is one of many peptides that could benefit from bioactive cyclization, a strategy that is amenable to broad application in pharmaceutical design.


Assuntos
Inibidores de PCSK9 , Peptídeos Cíclicos/farmacologia , Inibidores de Proteases/farmacologia , Sequência de Aminoácidos , Anticolesterolemiantes/química , Anticolesterolemiantes/metabolismo , Anticolesterolemiantes/farmacologia , Ciclização , Células Hep G2 , Humanos , Lipoproteínas LDL/metabolismo , Simulação de Acoplamento Molecular , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Pró-Proteína Convertase 9/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Ligação Proteica , Receptores de LDL/metabolismo
10.
Planta ; 252(6): 97, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33155076

RESUMO

MAIN CONCLUSION: We demonstrate the production of a structurally correct cyclotide in rice suspension cells with co-expression of a ligase-type AEP, which unlocks monocotyledons as production platforms to produce cyclotides. Cyclotides are a class of backbone-cyclic plant peptides that harbor a cystine knot composed of three disulfide bonds. These structural features make cyclotides particularly stable, and thus they have attracted significant attention for their use in biotechnological applications such as drug design. Currently, chemical synthesis is the predominant strategy to produce cyclotides for research purposes. However, synthetic production becomes costly both economically and environmentally at large scale. Plants offer an attractive alternative to chemical synthesis because of their lower cost and environmental footprint. In this study, rice suspension cells were engineered to produce the prototypical cyclotide, kalata B1 (kB1), a cyclotide with insecticidal properties from the African plant Oldenlandia affinis. Engineered rice cells produced structurally validated kB1 at yields of 64.21 µg/g (DW), which was dependent on the co-expression of a peptide ligase-competent asparaginyl endopeptidase OaAEP1b from O. affinis. Without co-expression, kB1 was predominantly produced as linear peptide. Through HPLC-MS co-elution, reduction, alkylation, enzymatic digestion, and proton NMR analysis, kB1 produced in rice was shown to be structurally identical to native kB1. This study reports the first example of an engineered plant suspension cell culture with the required molecular machinery for efficient production and cyclisation of a heterologous cyclotide.


Assuntos
Biotecnologia , Ciclotídeos , Oldenlandia , Oryza , Biotecnologia/métodos , Ciclotídeos/biossíntese , Ciclotídeos/genética , Oldenlandia/genética , Oryza/enzimologia , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo
11.
Biotechnol Adv ; 45: 107651, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33141031

RESUMO

Asparaginyl endopeptidases (AEPs) are cysteine proteases that control a myriad of cellular functions in plants, including maturation of seed storage proteins and programmed cell death. Recently, several noteworthy AEPs have been discovered that primarily function as transpeptidases rather than hydrolases, to instead catalyse the formation of new peptide bonds. These AEPs appear to have evolved for the cyclisation of a large class of plant defence peptides called cyclotides. Here we describe recent insights into the structural differences between AEPs that preference peptide ligation over hydrolysis. This knowledge is instrumental for the deployment of AEP ligases as biotechnological tools for in vitro applications such as protein labelling and or cyclization, and for plant molecular farming applications.


Assuntos
Proteínas de Plantas , Plantas , Biotecnologia , Ciclização , Ligases/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo
12.
Sci Adv ; 6(38)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32938666

RESUMO

Stinging trees from Australasia produce remarkably persistent and painful stings upon contact of their stiff epidermal hairs, called trichomes, with mammalian skin. Dendrocnide-induced acute pain typically lasts for several hours, and intermittent painful flares can persist for days and weeks. Pharmacological activity has been attributed to small-molecule neurotransmitters and inflammatory mediators, but these compounds alone cannot explain the observed sensory effects. We show here that the venoms of Australian Dendrocnide species contain heretofore unknown pain-inducing peptides that potently activate mouse sensory neurons and delay inactivation of voltage-gated sodium channels. These neurotoxins localize specifically to the stinging hairs and are miniproteins of 4 kDa, whose 3D structure is stabilized in an inhibitory cystine knot motif, a characteristic shared with neurotoxins found in spider and cone snail venoms. Our results provide an intriguing example of inter-kingdom convergent evolution of animal and plant venoms with shared modes of delivery, molecular structure, and pharmacology.

13.
J Biol Chem ; 295(32): 10911-10925, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32414842

RESUMO

Cyclotides are plant-derived peptides characterized by an ∼30-amino acid-long cyclic backbone and a cystine knot motif. Cyclotides have diverse bioactivities, and their cytotoxicity has attracted significant attention for its potential anticancer applications. Hybanthus enneaspermus (Linn) F. Muell is a medicinal herb widely used in India as a libido enhancer, and a previous study has reported that it may contain cyclotides. In the current study, we isolated 11 novel cyclotides and 1 known cyclotide (cycloviolacin O2) from H. enneaspermus and used tandem MS to determine their amino acid sequences. We found that among these cyclotides, hyen C comprises a unique sequence in loops 1, 2, 3, 4, and 6 compared with known cyclotides. The most abundant cyclotide in this plant, hyen D, had anticancer activity comparable to that of cycloviolacin O2, one of the most cytotoxic known cyclotides. We also provide mechanistic insights into how these novel cyclotides interact with and permeabilize cell membranes. Results from surface plasmon resonance experiments revealed that hyen D, E, L, and M and cycloviolacin O2 preferentially interact with model lipid membranes that contain phospholipids with phosphatidyl-ethanolamine headgroups. The results of a lactate dehydrogenase assay indicated that exposure to these cyclotides compromises cell membrane integrity. Using live-cell imaging, we show that hyen D induces rapid membrane blebbing and cell necrosis. Cyclotide-membrane interactions correlated with the observed cytotoxicity, suggesting that membrane permeabilization and disintegration underpin cyclotide cytotoxicity. These findings broaden our knowledge on the indigenous Indian herb H. enneaspermus and have uncovered cyclotides with potential anticancer activity.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Ciclotídeos/farmacologia , Descoberta de Drogas , Plantas Medicinais/química , Violaceae/química , Sequência de Aminoácidos , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Ciclotídeos/química , Ciclotídeos/isolamento & purificação , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Ressonância de Plasmônio de Superfície , Espectrometria de Massas em Tandem
14.
ACS Chem Biol ; 15(4): 962-969, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32203656

RESUMO

Cyclotides are a class of cyclic disulfide-rich peptides found in plants that have been adopted as a molecular scaffold for pharmaceutical applications due to their inherent stability and ability to penetrate cell membranes. For research purposes, they are usually produced and cyclized synthetically, but there are concerns around the cost and environmental impact of large-scale chemical synthesis. One strategy to improve this is to combine a recombinant production system with native enzyme-mediated cyclization. Asparaginyl endopeptidases (AEPs) are enzymes that can act as peptide ligases in certain plants to facilitate cyclotide maturation. One of these ligases, OaAEP1b, originates from the cyclotide-producing plant, Oldenlandia affinis, and can be produced recombinantly for use in vitro as an alternative to chemical cyclization of recombinant substrates. However, not all engineered cyclotides are compatible with AEP-mediated cyclization because new pharmaceutical epitopes often replace the most flexible region of the peptide, where the native cyclization site is located. Here we redesign a popular cyclotide grafting scaffold, MCoTI-II, to incorporate an AEP cyclization site located away from the usual grafting region. We demonstrate the incorporation of a bioactive peptide sequence in the most flexible region of MCoTI-II while maintaining AEP compatibility, where the two were previously mutually exclusive. We anticipate that our AEP-compatible scaffold, based on the most popular cyclotide for pharmaceutical applications, will be useful in designing bioactive cyclotides that are compatible with AEP-mediated cyclization and will therefore open up the possibility of larger scale enzyme-mediated production of recombinant or synthetic cyclotides alike.


Assuntos
Ciclotídeos/química , Cisteína Endopeptidases/química , Proteínas de Plantas/química , Sequência de Aminoácidos , Ciclização , Ciclotídeos/síntese química , Ciclotídeos/genética , Cisteína Endopeptidases/genética , Escherichia coli/genética , Oldenlandia/enzimologia , Proteínas de Plantas/síntese química , Proteínas de Plantas/genética , Engenharia de Proteínas
15.
Nat Commun ; 11(1): 1575, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32221295

RESUMO

Asparaginyl endopeptidases (AEPs) catalyze the key backbone cyclization step during the biosynthesis of plant-derived cyclic peptides. Here, we report the identification of two AEPs from Momordica cochinchinensis and biochemically characterize MCoAEP2 that catalyzes the maturation of trypsin inhibitor cyclotides. Recombinantly produced MCoAEP2 catalyzes the backbone cyclization of a linear cyclotide precursor (MCoTI-II-NAL) with a kcat/Km of 620 mM-1 s-1, making it one of the fastest cyclases reported to date. We show that MCoAEP2 can mediate both the N-terminal excision and C-terminal cyclization of cyclotide precursors in vitro. The rate of cyclization/hydrolysis is primarily influenced by varying pH, which could potentially control the succession of AEP-mediated processing events in vivo. Furthermore, MCoAEP2 efficiently catalyzes the backbone cyclization of an engineered MCoTI-II analog with anti-angiogenic activity. MCoAEP2 provides enhanced synthetic access to structures previously inaccessible by direct chemistry approaches and enables the wider application of trypsin inhibitor cyclotides in biotechnology applications.


Assuntos
Biocatálise , Cisteína Endopeptidases/metabolismo , Inibidores da Tripsina/metabolismo , Sequência de Aminoácidos , Ciclização , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Proteínas de Plantas/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
16.
Mar Biotechnol (NY) ; 22(2): 285-307, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32016679

RESUMO

Regeneration of a limb or tissue can be achieved through multiple different pathways and mechanisms. The sea anemone Exaiptasia pallida has been observed to have excellent regenerative proficiency, but this has not yet been described transcriptionally. In this study, we examined the genetic expression changes during a regenerative timecourse and reported key genes involved in regeneration and wound healing. We found that the major response was an early (within the first 8 h) upregulation of genes involved in cellular movement and cell communication, which likely contribute to a high level of tissue plasticity resulting in the rapid regeneration response observed in this species. We find the immune system was only transcriptionally active in the first 8 h post-amputation and conclude, in accordance with previous literature, that the immune system and regeneration have an inverse relationship. Fifty-nine genes (3.8% of total) differentially expressed during regeneration were identified as having no orthologues in other species, indicating that regeneration in E. pallida may rely on the activation of species-specific novel genes. Additionally, taxonomically restricted novel genes, including species-specific novels, and highly conserved genes were identified throughout the regenerative timecourse, showing that both may work in concert to achieve complete regeneration.


Assuntos
Regeneração/genética , Anêmonas-do-Mar/genética , Animais , Comunicação Celular/genética , Movimento Celular/genética , Perfilação da Expressão Gênica , Regeneração/fisiologia , Anêmonas-do-Mar/imunologia , Anêmonas-do-Mar/metabolismo , Cicatrização/genética
17.
Sci Rep ; 9(1): 10820, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31346249

RESUMO

Asparaginyl endopeptidases (AEPs) are a class of enzymes commonly associated with proteolysis in the maturation of seed storage proteins. However, a subset of AEPs work preferentially as peptide ligases, coupling release of a leaving group to formation of a new peptide bond. These "ligase-type" AEPs require only short recognition motifs to ligate a range of targets, making them useful tools in peptide and protein engineering for cyclisation of peptides or ligation of separate peptides into larger products. Here we report the recombinant expression, ligase activity and cyclisation kinetics of three new AEPs from the cyclotide producing plant Oldenlandia affinis with superior kinetics to the prototypical recombinant AEP ligase OaAEP1b. These AEPs work preferentially as ligases at both acidic and neutral pH and we term them "canonical AEP ligases" to distinguish them from other AEPs where activity preferences shift according to pH. We show that these ligases intrinsically favour ligation over hydrolysis, are highly efficient at cyclising two unrelated peptides and are compatible with organic co-solvents. Finally, we demonstrate the broad scope of recombinant AEPs in biotechnology by the backbone cyclisation of an intrinsically disordered protein, the 25 kDa malarial vaccine candidate Plasmodium falciparum merozoite surface protein 2 (MSP2).


Assuntos
Cisteína Endopeptidases/metabolismo , Proteínas Intrinsicamente Desordenadas/metabolismo , Ligases/metabolismo , Proteínas de Plantas/metabolismo , Antígenos de Protozoários/metabolismo , Ciclização , Modelos Moleculares , Engenharia de Proteínas , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/metabolismo
18.
Front Plant Sci ; 10: 645, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191573

RESUMO

The perennial leguminous herb Clitoria ternatea (butterfly pea) has attracted significant interest based on its agricultural and medical applications, which range from use as a fodder and nitrogen fixing crop, to applications in food coloring and cosmetics, traditional medicine and as a source of an eco-friendly insecticide. In this article we provide a broad multidisciplinary review that includes descriptions of the physical appearance, distribution, taxonomy, habitat, growth and propagation, phytochemical composition and applications of this plant. Notable amongst its repertoire of chemical components are anthocyanins which give C. ternatea flowers their characteristic blue color, and cyclotides, ultra-stable macrocyclic peptides that are present in all tissues of this plant. The latter are potent insecticidal molecules and are implicated as the bioactive agents in a plant extract used commercially as an insecticide. We include a description of the genetic origin of these peptides, which interestingly involve the co-option of an ancestral albumin gene to produce the cyclotide precursor protein. The biosynthesis step in which the cyclic peptide backbone is formed involves an asparaginyl endopeptidase, of which in C. ternatea is known as butelase-1. This enzyme is highly efficient in peptide ligation and has been the focus of many recent studies on peptide ligation and cyclization for biotechnological applications. The article concludes with some suggestions for future studies on this plant, including the need to explore possible synergies between the various peptidic and non-peptidic phytochemicals.

19.
Front Plant Sci ; 10: 602, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31156672

RESUMO

The backbone cyclic and disulfide bridged sunflower trypsin inhibitor-1 (SFTI-1) peptide is a proven effective scaffold for a range of peptide therapeutics. For production at laboratory scale, solid phase peptide synthesis techniques are widely used, but these synthetic approaches are costly and environmentally taxing at large scale. Here, we developed a plant-based approach for the recombinant production of SFTI-1-based peptide drugs. We show that transient expression in Nicotiana benthamiana allows for rapid peptide production, provided that asparaginyl endopeptidase enzymes with peptide-ligase functionality are co-expressed with the substrate peptide gene. Without co-expression, no target cyclic peptides are detected, reflecting rapid in planta degradation of non-cyclized substrate. We test this recombinant production system by expressing a SFTI-1-based therapeutic candidate that displays potent and selective inhibition of human plasmin. By using an innovative multi-unit peptide expression cassette, we show that in planta yields reach ~60 µg/g dry weight at 6 days post leaf infiltration. Using nuclear magnetic resonance structural analysis and functional in vitro assays, we demonstrate the equivalence of plant and synthetically derived plasmin inhibitor peptide. The methods and insights gained in this study provide opportunities for the large scale, cost effective production of SFTI-1-based therapeutics.

20.
Proc Natl Acad Sci U S A ; 116(16): 7831-7836, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30944220

RESUMO

Cyclotides are plant defense peptides that have been extensively investigated for pharmaceutical and agricultural applications, but key details of their posttranslational biosynthesis have remained elusive. Asparaginyl endopeptidases are crucial in the final stage of the head-to-tail cyclization reaction, but the enzyme(s) involved in the prerequisite steps of N-terminal proteolytic release were unknown until now. Here we use activity-guided fractionation to identify specific members of papain-like cysteine proteases involved in the N-terminal cleavage of cyclotide precursors. Through both characterization of recombinantly produced enzymes and in planta peptide cyclization assays, we define the molecular basis of the substrate requirements of these enzymes, including the prototypic member, here termed kalatase A. The findings reported here will pave the way for improving the efficiency of plant biofactory approaches for heterologous production of cyclotide analogs of therapeutic or agricultural value.


Assuntos
Ciclotídeos , Cisteína Proteases , Papaína , Proteínas de Plantas , Ciclotídeos/química , Ciclotídeos/metabolismo , Cisteína Proteases/química , Cisteína Proteases/metabolismo , Defensinas/química , Defensinas/metabolismo , Modelos Moleculares , Papaína/química , Papaína/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA