Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Sci Total Environ ; 900: 165767, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37506910

RESUMO

Pesticide degradation in wetland systems intercepting agricultural runoff is often overlooked and mixed with other dissipation processes when assessing pesticide concentrations alone. This study focused on the potential of compound-specific isotope analysis (CSIA) to estimate pesticide degradation in a stormwater wetland receiving pesticide runoff from a vineyard catchment. The fungicide dimethomorph (DIM), with diastereoisomers E and Z, was the prevalent pesticide in the runoff entering the wetland from June to September 2020. DIM Z, the most commonly detected isomer, exhibited a significant change (Δ(13C) > 3 ‰) in its carbon isotopic composition in the wetland water compared to the runoff and commercial formulation, which indicated degradation. Laboratory DIM degradation assays, including photodegradation and biodegradation in oxic wetland water with and without aquatic plants and in anoxic sediments, indicated that DIM degradation mainly occurred in the wetland sediments. The rapid degradation of both DIM isomers (E:t1/2 = 1.2 ± 0.6, Z: t1/2 = 1.5 ± 0.8 days) in the wetland sediment led to significant carbon isotopic fractionation (εDIM-E = -3.0 ± 0.6 ‰, εDIM-Z = -2.0 ± 0.2 ‰). In contrast, no significant isotope fractionation occurred during DIM photodegradation, despite the rapid isomerization of the E isomer to the Z isomer and a half-life of 15.3 ± 2.2 days for both isomers. DIM degradation was slow (E: t1/2 = 56-62 days, Z: t1/2 = 82-103 days) in oxic water with plants, while DIM persisted (120 days) in water without plants. DIM CSIA was thus used to evaluate the in situ biodegradation of DIM Z in the wetland. The DIM Z degradation estimates based on a classical concentration mass balance (86-94 %) were slightly higher than estimates based on the isotopic mass balance (61-68 %). Altogether, this study shows the potential of CSIA to conservatively evaluate pesticide degradation in wetland systems, offering a reliable alternative to classical labor-intensive mass balance approaches.).


Assuntos
Fungicidas Industriais , Praguicidas , Poluentes Químicos da Água , Praguicidas/análise , Fungicidas Industriais/análise , Áreas Alagadas , Isótopos de Carbono/análise , Biodegradação Ambiental , Plantas , Poluentes Químicos da Água/análise , Água/análise
2.
MethodsX ; 9: 101880, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311268

RESUMO

Compound-specific isotope analysis (CSIA) is a powerful approach to evaluate the transformation of organic pollutants in the environment. However, the application of CSIA to micropollutants, such as pesticides, remains limited because appropriate extraction methods are currently lacking. Such methods should address a wide range of pesticides and environmental matrices, while recovering sufficient mass for reliable CSIA without inducing stable isotope fractionation. Here, we present simple extraction methods for carbon and nitrogen CSIA for different environmental matrices and six commonly used herbicides, i.e., atrazine, terbutryn, acetochlor, alachlor, butachlor, and S-metolachlor, and three fungicides, i.e., dimethomorph, tebuconazole, and metalaxyl. We examined the potential of several extraction methods for four types of soils or sediments, three types of environmental waters and aerial and root plant samples for multielement (ME)-CSIA.•Pesticide extraction recoveries varied depending on the physical characteristics of the pesticides and matrix properties for environmental water (77 to 87%), soil and sediment (35 to 82%), and plant (40 to 59%) extraction.•The tested extraction methods did not significantly affect the carbon and nitrogen stable isotope signatures of pesticides (Δ(13C) <0.9‰ for Δ(15N) <1.0‰).

3.
J Contam Hydrol ; 250: 104051, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35901656

RESUMO

Compound-specific isotope analysis (CSIA) has become a valuable tool in understanding the fate of organic contaminants at field sites. However, its application to chlorinated benzenes (CBs), a group of toxic and persistent groundwater contaminants, has received less attention. This study employed CSIA to investigate the occurrence of natural degradation of various CBs and benzene in a contaminated aquifer. Despite the complexity of the study area (e.g., installation of a sheet pile barrier and the presence of a complex set of contaminants), the substantial enrichments in δ13C values (i.e., >2‰) for all CBs and benzene across the sampling wells indicate in situ degradation of these compounds. In particular, the 13C enrichments for 1,2,4-trichlorobenzene (1,2,4-TCB) and 1,2-dichlorobenzene (1,2-DCB) display good correlations with decreasing groundwater concentrations, consistent with the effects of in situ biodegradation. Using the Rayleigh model, the extent of degradation (EoD) is estimated to be 47-99% for 1,2-DCB, and 21-73% for 1,2,4-TCB. The enrichments observed for the other CBs (1,4-DCB and chlorobenzene (MCB)) and benzene at the site are also suggestive of in situ biodegradation. Due to simultaneous degradation and production of 1,4-DCB (a major 1,2,4-TCB degradation product), MCB (from DCB degradation), and benzene (from MCB degradation), the estimation of EoD for these intermediate compounds is more complex but a modelling simulation supports in situ biodegradation of these daughter products. In particular, the fact that the δ13C values of MCB and benzene (i.e., daughter products of 1,2,4-TCB) are more enriched than the original δ13C value of their parent 1,2,4-TCB provides definitive evidence for the occurrence of in situ biodegradation of the MCB and benzene.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Benzeno , Biodegradação Ambiental , Isótopos de Carbono , Clorobenzenos/metabolismo , Isótopos , Poluentes Químicos da Água/metabolismo
4.
Sci Total Environ ; 842: 156735, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35738369

RESUMO

Pesticides lead to surface water pollution and ecotoxicological effects on aquatic biota. Novel strategies are required to evaluate the contribution of degradation to the overall pesticide dissipation in surface waters. Here, we combined polar organic chemical integrative samplers (POCIS) with compound-specific isotope analysis (CSIA) to trace in situ pesticide degradation in artificial ponds and agricultural streams. The application of pesticide CSIA to surface waters is currently restricted due to environmental concentrations in the low µg.L-1 range, requiring processing of large water volumes. A series of laboratory experiments showed that POCIS enables preconcentration and accurate recording of the carbon isotope signatures (δ13C) of common pesticides under simulated surface water conditions and for various scenarios. Commercial and in-house POCIS did not significantly (Δδ13C < 1 %) change the δ13C of pesticides during uptake, extraction, and δ13C measurements of pesticides, independently of the pesticide concentrations (1-10 µg.L-1) or the flow speeds (6 or 14 cm.s-1). However, simulated rainfall events of pesticide runoff affected the δ13C of pesticides in POCIS. In-house POCIS coupled with CSIA of pesticides were also tested under different field conditions, including three flow-through and off-stream ponds and one stream receiving pesticides from agricultural catchments. The POCIS-CSIA method enabled to determine whether degradation of S-metolachlor and dimethomorph mainly occurred in agricultural soil or surface waters. Comparison of δ13C of S-metolachlor in POCIS deployed in a stream with δ13C of S-metolachlor in commercial formulations suggested runoff of fresh S-metolachlor in the midstream sampling site, which was not recorded in grab samples. Altogether, our study highlights that the POCIS-CSIA approach represents a unique opportunity to evaluate the contribution of degradation to the overall dissipation of pesticides in surface waters.


Assuntos
Praguicidas , Poluentes Químicos da Água , Isótopos de Carbono/análise , Monitoramento Ambiental/métodos , Compostos Orgânicos/análise , Praguicidas/análise , Água/análise , Poluentes Químicos da Água/análise
5.
Water Res ; 207: 117809, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34741903

RESUMO

Industrial chemicals are frequently detected in sediments due to a legacy of chemical spills. Globally, site remedies for groundwater and sediment decontamination include natural attenuation by in situ abiotic and biotic processes. Compound-specific isotope analysis (CSIA) is a diagnostic tool to identify, quantify, and characterize degradation processes in situ, and in some cases can differentiate between abiotic degradation and biodegradation. This study reports high-resolution carbon, chlorine, and hydrogen stable isotope profiles for monochlorobenzene (MCB), and carbon and hydrogen stable isotope profiles for benzene, coupled with measurements of pore water concentrations in contaminated sediments. Multi-element isotopic analysis of δ13C and δ37Cl for MCB were used to generate dual-isotope plots, which for 2 locations at the study site resulted in ΛC/Cl(130) values of 1.42 ± 0.19 and ΛC/Cl(131) values of 1.70 ± 0.15, consistent with theoretical calculations for carbon-chlorine bond cleavage (ΛT = 1.80 ± 0.31) via microbial reductive dechlorination. For benzene, significant δ2H (122‰) and δ13C (6‰) depletion trends, followed by enrichment trends in δ13C (1.6‰) in the upper part of the sediment, were observed at the same location, indicating not only production of benzene due to biodegradation of MCB, but subsequent biotransformation of benzene itself to nontoxic end-products. Degradation rate constants calculated independently using chlorine isotopic data and carbon isotopic data, respectively, agreed within uncertainty thus providing multiple lines of evidence for in situ contaminant degradation via reductive dechlorination and providing the foundation for a novel approach to determine site-specific in situ rate estimates essential for the prediction of remediation outcomes and timelines.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Anaerobiose , Benzeno/análise , Biodegradação Ambiental , Isótopos de Carbono/análise , Clorobenzenos , Poluentes Químicos da Água/análise
6.
Anal Chem ; 92(3): 2383-2387, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31898453

RESUMO

There is a strong need for careful quality control in hydrogen compound-specific stable isotope analysis (CSIA) of halogenated compounds. This arises in part due to the lack of universal design of the chromium (Cr) reactors. In this study, factors that optimize the critical performance parameter, linearity, for the Cr reduction method for hydrogen isotope analysis were identified and evaluated. These include the effects of short and long vertically mounted reactors and temperature profiles on trapping of Cl to ensure accurate and precise hydrogen isotope measurements. This paper demonstrates the critical parameters that need consideration to optimize any Cr reactor applications to ensure the accuracy of δ2H analysis for organic compounds and to enhance intercomparability for both international standards and reference materials run by continuous flow versus an elemental analyzer.

7.
Environ Sci Technol ; 54(2): 870-878, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31789027

RESUMO

Compound-specific isotope analysis (CSIA) is a valuable tool in contaminant remediation studies. Chlorofluorocarbons (CFCs) are ozone-depleting substances previously thought to be persistent in groundwater under most geochemical conditions but more recently have been found to (bio)transform in some laboratory experiments. To date, limited applications of CSIA to CFCs have been undertaken. Here, biotransformation-associated carbon isotope enrichment factors, εC,bulk for CFC-113 (εC,bulk = -8.5 ± 0.4‰) and CFC-11 (εC,bulk = -14.5 ± 1.9‰), were determined. δ13C signatures of pure-phase CFCs and hydrochlorofluorocarbons were measured to establish source signatures. These findings were applied to investigate potential in situ CFC transformation in groundwater at a field site, where carbon isotope fractionation of CFC-11 suggests naturally occurring biotransformation by indigenous microorganisms. The maximum extent of CFC-11 transformation is estimated to be up to 86% by an approximate calculation using the Rayleigh concept. CFC-113 δ13C values in contrast were not resolvably different from pure-phase sources measured to date, demonstrating that CSIA can aid in identifying which compounds may, or may not, be undergoing reactive processes at field sites. Science and public attention remains focused on CFCs, as unexplained source inputs to the atmosphere have been recently reported, and the potential for CFC biotransformation in surface and groundwaters remains unclear. This study proposes δ13C CSIA as a novel application to study the fate of CFCs in groundwater.


Assuntos
Clorofluorcarbonetos , Água Subterrânea , Biodegradação Ambiental , Biotransformação , Isótopos de Carbono , Compostos Orgânicos
8.
Water Res ; 149: 632-639, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30583106

RESUMO

A key challenge in conceptual models for contaminated sites is identification of the multiplicity of processes controlling contaminant concentrations and distribution as well as quantification of the rates at which such processes occur. Conventional protocol for calculating biodegradation rates can lead to overestimation by attributing concentration decreases to degradation alone. This study reports a novel approach of assessing in situ biodegradation rates of monochlorobenzene (MCB) and benzene in contaminated sediments. Passive diffusion samplers allowing cm-scale vertical resolution across the sediment-water interface were coupled with measurements of concentrations and stable carbon isotope signatures to identify zones of active biodegradation of both compounds. Large isotopic enrichment trends in 13C were observed for MCB (1.9-5.7‰), with correlated isotopic depletion in 13C for benzene (1.0-7.0‰), consistent with expected isotope signatures for substrate and daughter product produced by in situ biodegradation. Importantly in the uppermost sediments, benzene too showed a pronounced 13C enrichment trend of up to 2.2‰, providing definitive evidence for simultaneous degradation as well as production of benzene. The hydrogeological concept of representative elementary volume was applied to CSIA data for the first time and identified a critical zone of 10-15 cm with highest biodegradation potential in the sediments. Using both stable isotope-derived rate calculations and numerical modeling, we show that MCB degraded at a slower rate (0.1-1.4 yr-1 and 0.2-3.2 yr-1, respectively) than benzene (3.3-84.0 yr-1) within the most biologically active zone of the sediment, contributing to detoxification.


Assuntos
Poluentes Químicos da Água , Benzeno , Biodegradação Ambiental , Isótopos de Carbono
9.
Environ Sci Technol ; 52(15): 8607-8616, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29975517

RESUMO

Dichloromethane (DCM) is a probable human carcinogen and frequent groundwater contaminant and contributes to stratospheric ozone layer depletion. DCM is degraded by aerobes harboring glutathione-dependent DCM dehalogenases; however, DCM contamination occurs in oxygen-deprived environments, and much less is known about anaerobic DCM metabolism. Some members of the Peptococcaceae family convert DCM to environmentally benign products including acetate, formate, hydrogen (H2), and inorganic chloride under strictly anoxic conditions. The current study applied stable carbon and chlorine isotope fractionation measurements to the axenic culture Dehalobacterium formicoaceticum and to the consortium RM comprising DCM degrader Candidatus Dichloromethanomonas elyunquensis. Degradation-associated carbon and chlorine isotope enrichment factors (εC and εCl) of -42.4 ± 0.7‰ and -5.3 ± 0.1‰, respectively, were measured in D. formicoaceticum cultures. A similar εCl of -5.2 ± 0.1‰, but a substantially lower εC of -18.3 ± 0.2‰, were determined for Ca. Dichloromethanomonas elyunquensis. The εC and εCl values resulted in distinctly different dual element C-Cl isotope correlations (ΛC/Cl = Δδ13C/Δδ37Cl) of 7.89 ± 0.12 and 3.40 ± 0.03 for D. formicoaceticum and Ca. Dichloromethanomonas elyunquensis, respectively. The distinct ΛC/Cl values obtained for the two cultures imply mechanistically distinct C-Cl bond cleavage reactions, suggesting that members of Peptococcaceae employ different pathways to metabolize DCM. These findings emphasize the utility of dual carbon-chlorine isotope analysis to pinpoint DCM degradation mechanisms and to provide an additional line of evidence that detoxification is occurring at DCM-contaminated sites.


Assuntos
Cloreto de Metileno , Peptococcaceae , Anaerobiose , Biodegradação Ambiental , Carbono , Isótopos de Carbono , Cloro
10.
Environ Pollut ; 210: 166-73, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26716730

RESUMO

Microbial degradation of phenol and cresols can occur under oxic and anoxic conditions by different degradation pathways. One recent technique to take insight into reaction mechanisms is compound-specific isotope analysis (CSIA). While enzymes and reaction mechanisms of several degradation pathways have been characterized in (bio)chemical studies, associated isotope fractionation patterns have been rarely reported, possibly due to constraints in current analytical methods. In this study, carbon enrichment factors and apparent kinetic isotope effects (AKIEc) of the initial steps of different aerobic and anaerobic phenol and cresols degradation pathways were analyzed by isotope ratio mass spectrometry connected with liquid chromatography (LC-IRMS). Significant isotope fractionation was detected for aerobic ring hydroxylation, anoxic side chain hydroxylation, and anoxic fumarate addition, while anoxic carboxylation reactions produced small and inconsistent fractionation. The results suggest that several microbial degradation pathways of phenol and cresols are detectable in the environment by CSIA.


Assuntos
Cresóis/análise , Fenóis/análise , Biodegradação Ambiental , Isótopos de Carbono/análise , Isótopos de Carbono/metabolismo , Fracionamento Químico/métodos , Cresóis/química , Cresóis/metabolismo , Cinética , Fenóis/química , Fenóis/metabolismo
11.
J Pharm Biomed Anal ; 115: 410-7, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26370616

RESUMO

Multidimensional isotope profiling is a useful tool for the characterization of the provenance of active pharmaceutical ingredients (API). To evaluate this approach, samples of the nonsteroidal anti-inflammatory drug (NSAIDs) ibuprofen were collected from 32 manufactures and 13 countries, and carbon, hydrogen and oxygen isotope ratios were analyzed by elemental analyzer, chromium-filled elemental analyzer and high temperature conversion elemental analyzer (EA, Cr-EA and TC/EA) coupled to an isotope ratio mass spectrometry (IRMS). The range of isotope values of ibuprofen (δ(13)C: -33.2±0.1‰ to -27.4±0.1‰; δ(2)H: -121.4±1.5‰ to -41.2±0.8‰; and δ(18)O: -12.6±0.3‰ to 19.0±0.6‰) allowed characterization and distinction of 5 groups, which reflect synthetic pathways and/or use of different raw materials, as well as possible isotope fractionation during the synthesis reactions. This study highlights that multi isotope fingerprinting has potential for identification of sources, and provides a database of isotope composition of ibuprofen (δ(2)H, δ(13)C, δ(18)O) that might improve the tracing of origin, transport pathways and environmental fate of ibuprofen.


Assuntos
Anti-Inflamatórios não Esteroides/análise , Isótopos de Carbono/análise , Medicamentos Falsificados/análise , Hidrogênio/análise , Ibuprofeno/análise , Espectrometria de Massas/métodos , Isótopos de Oxigênio/análise , Anti-Inflamatórios não Esteroides/síntese química , Química Farmacêutica , Cromatografia Líquida de Alta Pressão , Medicamentos Falsificados/síntese química , Ibuprofeno/síntese química , Espectrofotometria Ultravioleta
12.
Rapid Commun Mass Spectrom ; 29(14): 1343-50, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26405796

RESUMO

RATIONALE: The development of compound-specific chlorine isotope analysis (Cl-CSIA) is hindered by the lack of international organochlorine reference materials with isotopic compositions expressed in the δ(37) Cl notation. Thus, a reliable off-line analytical method is needed, allowing direct comparison of the δ(37) Cl values of molecularly different organic compounds with that of ocean-water chloride, to refer measurement results to a Standard Mean Ocean Chloride (SMOC) scale. METHODS: The analytical method included sealed-tube combustion of organochlorines, precipitation and subsequent conversion of formed inorganic chlorides into methyl chloride (CH3 Cl) for the determination of δ(37) Cl values by Dual-Inlet Isotope Ratio Mass Spectrometry (DI-IRMS). A sample preparation step most sensitive to the sample size - dissolution of the inorganic copper chlorides formed by combustion of organochlorines - was identified. RESULTS: Recovery of 94 ± 5% of chlorine was reached by applying determined optimal conditions for the dissolution, implying good external precision of δ(37) Cl values (-0.18 ± 0.03‰, 1σ, n = 3). Validation of the optimized method by the analysis of the produced and initial CH3 Cl samples with known δ(37) Cl values vs SMOC resulted in a difference of 0.11 ± 0.04‰ (1σ, n = 3), confirming the external precision and accuracy of the entire method. CONCLUSIONS: The efficiency of the sample preparation method for CH3 Cl-DI-IRMS analysis is independent both of the chemical structure of the chlorinated compound and of the amount of chlorine in the sample. This method has the potential to be applied to a broad range of chlorinated organic compounds, e.g. reference material for the calibration of methods for Cl-CSIA against SMOC.


Assuntos
Cloro/análise , Hidrocarbonetos Clorados/análise , Espectrometria de Massas/métodos , Água do Mar/análise , Calibragem , Cromatografia Gasosa-Espectrometria de Massas/métodos , Isótopos/análise , Solubilidade
14.
Anal Chem ; 87(10): 5198-205, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25874646

RESUMO

The high temperature conversion (HTC) technique using an elemental analyzer with a glassy carbon tube and filling (temperature conversion/elemental analysis, TC/EA) is a widely used method for hydrogen isotopic analysis of water and many solid and liquid organic samples with analysis by isotope-ratio mass spectrometry (IRMS). However, the TC/EA IRMS method may produce inaccurate δ(2)H results, with values deviating by more than 20 mUr (milliurey = 0.001 = 1‰) from the true value for some materials. We show that a single-oven, chromium-filled elemental analyzer coupled to an IRMS substantially improves the measurement quality and reliability for hydrogen isotopic compositions of organic substances (Cr-EA method). Hot chromium maximizes the yield of molecular hydrogen in a helium carrier gas by irreversibly and quantitatively scavenging all reactive elements except hydrogen. In contrast, under TC/EA conditions, heteroelements like nitrogen or chlorine (and other halogens) can form hydrogen cyanide (HCN) or hydrogen chloride (HCl) and this can cause isotopic fractionation. The Cr-EA technique thus expands the analytical possibilities for on-line hydrogen-isotope measurements of organic samples significantly. This method yielded reproducibility values (1-sigma) for δ(2)H measurements on water and caffeine samples of better than 1.0 and 0.5 mUr, respectively. To overcome handling problems with water as the principal calibration anchor for hydrogen isotopic measurements, we have employed an effective and simple strategy using reference waters or other liquids sealed in silver-tube segments. These crimped silver tubes can be employed in both the Cr-EA and TC/EA techniques. They simplify considerably the normalization of hydrogen-isotope measurement data to the VSMOW-SLAP (Vienna Standard Mean Ocean Water-Standard Light Antarctic Precipitation) scale, and their use improves accuracy of the data by eliminating evaporative loss and associated isotopic fractionation while handling water as a bulk sample. The calibration of organic samples, commonly having high δ(2)H values, will benefit from the availability of suitably (2)H-enriched reference waters, extending the VSMOW-SLAP scale above zero.


Assuntos
Técnicas de Química Analítica/métodos , Cromo/química , Hidrogênio/química , Compostos Orgânicos/química , Temperatura , Calibragem , Difusão , Halogênios/química , Isótopos
15.
Environ Sci Technol ; 49(10): 6029-36, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25906077

RESUMO

Carbon isotope fractionation of sulfamethoxazole (SMX) during biodegradation by Microbacterium sp. strain BR1 (ipso-hydroxylation) and upon direct photolysis was investigated. Carbon isotope signatures (δ(13)C) of SMX were measured by LC-IRMS (liquid chromatography coupled to isotope ratio mass spectrometry). A new LC-IRMS method for the SMX metabolite, 3-amino-5-methylisoxazole (3A5MI), was established. Carbon isotope enrichment factors for SMX (ε(C)) were -0.6 ± 0.1‰ for biodegradation and -2.0 ± 0.1‰ and -3.0 ± 0.2‰ for direct photolysis, at pH 7.4 and pH 5, respectively. The corresponding apparent kinetic isotope effects (AKIE) for ipso-hydroxylation were 1.006 ± 0.001; these fall in the same range as AKIE in previously studied hydroxylation reactions. The differences in SMX and 3A5MI fractionation upon biotic and abiotic degradation suggest that compound specific stable isotope analysis (CSIA) is a suitable method to distinguish SMX reaction pathways. In addition, the study revealed that the extent of isotope fractionation during SMX photolytic cleavage is pH-dependent.


Assuntos
Actinomycetales/metabolismo , Biodegradação Ambiental , Isótopos de Carbono/metabolismo , Sulfametoxazol/metabolismo , Fotólise , Sulfametoxazol/análise
16.
Anal Chem ; 87(5): 2832-9, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25647449

RESUMO

A universal application of compound-specific isotope analysis of chlorine was thus far limited by the availability of suitable analysis techniques. In this study, gas chromatography in combination with a high-temperature conversion interface (GC-HTC), converting organic chlorine in the presence of H2 to gaseous HCl, was coupled to a dual-detection system, combining an ion trap mass spectrometer (MS) and isotope-ratio mass spectrometer (IRMS). The combination of the MS/IRMS detection enabled a detailed characterization, optimization, and online monitoring of the high-temperature conversion process via ion trap MS as well as a simultaneous chlorine isotope analysis by the IRMS. Using GC-HTC-MS/IRMS, chlorine isotope analysis at optimized conversion conditions resulted in very accurate isotope values (δ(37)Cl(SMOC)) for measured reference material with known isotope composition, including chlorinated ethylene, chloromethane, hexachlorocyclohexane, and trichloroacetic acids methyl ester. Respective detection limits were determined to be <15 nmol Cl on column with achieved precision of <0.3‰.


Assuntos
Cloro/análise , Etilenos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hexaclorocicloexano/análise , Marcação por Isótopo/métodos , Cloreto de Metila/análise , Ácido Tricloroacético/análise
17.
Anal Chem ; 86(15): 7252-7, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-24975492

RESUMO

The performance of liquid chromatography-isotope ratio mass spectrometry (LC-IRMS) for polar halogenated compounds was evaluated. Oxidation capacity of the system was tested with halogenated acetic acids and halogenated aromatic compounds. Acetic acid (AA) was selected as a reference compound for complete oxidation and compared on the molar basis to the oxidation of other analytes. The isotope values were proofed with calibrated δ(13)C values obtained with an elemental analyzer (EA). Correct isotope values were obtained for mono- and dichlorinated, fluorinated, and tribrominated acetic acids and also for aniline, phenol, benzene, bromobenzene, chlorobenzene, 1,2-dichlorobenzene, 2,4,6-trichlorophenol, pentafluorophenol, and nitrobenzene. Incomplete oxidation of trichloroacetic acid (TCA) and trifluoroacetic acid (TFA) resulted in lower recovery compared to AA (37% and 24%, respectively) and in isotopic shift compared to values obtained with EA (TCA Δδ(13)C(EA/LC-IRMS) = 8.8‰, TFA Δδ(13)C(EA/LC-IRMS) = 6.0‰). Improvement of oxidation by longer reaction time in the reactor and increase in the concentration of sulfate radicals did not lead to complete combustion of TCA and TFA needed for δ(13)C analysis. To the best of our knowledge, this is the first time such highly chlorinated compounds were studied with the LC-IRMS system. This work provides information for method development of LC-IRMS methods for halogenated contaminants that are known as potential threats to public health and the environment.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Halogênios/análise , Isótopos/química , Espectrometria de Massas/métodos , Acetatos/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA