Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 13(16)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784666

RESUMO

The oncological use of cisplatin is hindered by its severe side effects and a very important resistance problem. To overcome these problems, scientists have attempted to design new generation transition-metal anticancer complexes. In this study, we present new complexes, ruthenium(II) [(η6-p-cymene)RuCl(py2CO)]PF6 (1), iridium(III) [(η5-Cp)IrCl(py2CO)]PF6 (2), and NH4[IrCl4(py2CO)]·H2O (3), based on di-2-pyridylketone (py2CO). The prepared complexes were characterized by FTIR, 1H, 13C, 15N NMR, UV-Vis, PL and elemental analysis techniques. The single-crystal X-ray structure analysis and comparative data revealed pseudo-octahedral half-sandwich 1 and 2 complexes and octahedral tetrachloroiridate(III) 3 with a rare chelating κ2N,O coordination mode of py2CO. The compounds were tested in vitro against three cancer cell lines-colorectal adenoma (LoVo), myelomonocytic leukaemia (MV-4-11), breast adenocarcinoma (MCF-7), and normal fibroblasts (BALB/3T3). The most promising results were obtained for iridium(III) complex 3 against MV-4-11 (IC50 = 35.8 ± 13.9 µg/mL) without a toxic effect against normal BALB/3T3, which pointed towards its selectivity as a potential anticancer agent. Extensive research into their mode of binding with DNA confirmed for 1 and 2 complexes non-classical binding modes, while the 3D circular dichroism (CD) experiment (ΔTm) suggested that 3 induced the probable formation of covalent bonds with DNA. In addition, the obtained iridium complexes induce ROS, which, in synergy with hydrolysis promoting DNA bonding, may lead to cancer cell death.

2.
J Biol Inorg Chem ; 24(4): 591-606, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31115765

RESUMO

In this paper, we discussed the similarities and differences in d6 low-spin half-sandwich ruthenium, rhodium and iridium complexes containing 2,2'-biimidazole (H2biim). Three new complexes, {[RuCl(H2biim)(η6-p-cymene)]PF6}2·H2O (1), [(η5-Cp)RhCl(H2biim)]PF6 (2), and [(η5-Cp)IrCl(H2biim)]PF6 (3), were fully characterized by CHN, X-ray diffraction analysis, UV-Vis, FTIR, and 1H, 13C and 15N NMR spectroscopies. The complexes exhibit a typical pseudooctahedral piano-stool geometry, in which the aromatic arene ring (p-cymene or Cp) forms the seat, while the bidentate 2,2'-biimidazole and chloride ion form the three legs of the piano stool. Moreover, the cytotoxic activities of the compounds were examined in the LoVo, HL-60, MV-4-11, MCF-7 human cancer cell lines and BALB/3T3 normal mouse fibroblasts. Notably, the investigated complexes showed no cytotoxic effects towards the normal BALB/3T3 cell line compared to cisplatin, which has an IC50 value of 2.20 µg. Importantly, 1 displayed the highest activity against HL-60 (IC50 4.35 µg). To predict a binding mode, we explored the potential interactions of the metal complexes with CT-DNA and protein using UV absorption and circular dichroism. The obtained data suggest that the complexes could interact with CT-DNA via an outside binding mode. Moreover, binding of the complexes with the GSH via UV-Vis and ESI mass spectra was determined. Comparative studies have shown that the rhodium complex (2) is the most GSH reactive, which is probably responsible for its deactivation towards LoVo and MCF-7 tumour cells. The influence of the metal ion on the biological activity of isostructural Rh(III) and Ir(III) complexes was an important goal of the presented investigation.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Irídio/química , Ródio/química , Rutênio/química , Células 3T3 , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Sintética , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , DNA/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Modelos Moleculares , Conformação Molecular , Albumina Sérica Humana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA