Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
JHEP Rep ; 5(9): 100811, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37575883

RESUMO

Obesity-related complications such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes (T2D) are well-established risk factors for the development of hepatocellular carcinoma (HCC). This review provides insights into the molecular mechanisms that underlie the role of steatosis, hyperinsulinemia and hepatic inflammation in HCC development and progression. We focus on recent findings linking intracellular pathways and transcription factors that can trigger the reprogramming of hepatic cells. In addition, we highlight the role of enzymes in dysregulated metabolic activity and consequent dysfunctional signalling. Finally, we discuss the potential uses and challenges of novel therapeutic strategies to prevent and treat NAFLD/T2D-associated HCC.

2.
Mol Metab ; 69: 101681, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36707047

RESUMO

OBJECTIVES: Type 1 diabetes (T1D) is caused by progressive immune-mediated loss of insulin-producing ß-cells. Inflammation is detrimental to ß-cell function and survival, moreover, both apoptosis and necrosis have been implicated as mechanisms of ß-cell loss in T1D. The receptor interacting serine/threonine protein kinase 1 (RIPK1) promotes inflammation by serving as a scaffold for NF-κB and MAPK activation, or by acting as a kinase that triggers apoptosis or necroptosis. It is unclear whether RIPK1 kinase activity is involved in T1D pathology. In the present study, we investigated if absence of RIPK1 activation would affect the susceptibility to immune-mediated diabetes or diet induced obesity (DIO). METHODS: The RIPK1 knockin mouse line carrying a mutation mimicking serine 25 phosphorylation (Ripk1S25D/S25D), which abrogates RIPK1 kinase activity, was utilized to assess the in vivo role of RIPK1 in immune-mediated diabetes or diet induced obesity (DIO). In vitro, ß-cell death and RIPK1 kinase activity was analysed in conditions known to induce RIPK1-dependent apoptosis/necroptosis. RESULTS: We demonstrate that Ripk1S25D/S25D mice presented normal glucose metabolism and ß-cell function. Furthermore, immune-mediated diabetes and DIO were not different between Ripk1S25D/S25D and Ripk1+/+ mice. Despite strong activation of RIPK1 kinase and other necroptosis effectors (RIPK3 and MLKL) by TNF+BV6+zVAD, no cell death was observed in mouse islets nor human ß-cells. CONCLUSION: Our results contrast recent literature showing that most cell types undergo necroptosis following RIPK1 kinase activation. This peculiarity may reflect an adaptation to the inability of ß-cells to proliferate and self-renewal.


Assuntos
Diabetes Mellitus Tipo 1 , Proteínas Quinases , Camundongos , Animais , Humanos , Proteínas Quinases/metabolismo , Inflamação/metabolismo , Serina , Obesidade , Proteína Serina-Treonina Quinases de Interação com Receptores
3.
Oncogene ; 40(33): 5155-5167, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34290399

RESUMO

Obesity affects more than 650 million individuals worldwide and is a well-established risk factor for the development of hepatocellular carcinoma (HCC). Oxidative stress can be considered as a bona fide tumor promoter, contributing to the initiation and progression of liver cancer. Indeed, one of the key events involved in HCC progression is excessive levels of reactive oxygen species (ROS) resulting from the fatty acid influx and chronic inflammation. This review provides insights into the different intracellular sources of obesity-induced ROS and molecular mechanisms responsible for hepatic tumorigenesis. In addition, we highlight recent findings pointing to the role of the dysregulated activity of BCL-2 proteins and protein tyrosine phosphatases (PTPs) in the generation of hepatic oxidative stress and ROS-mediated dysfunctional signaling, respectively. Finally, we discuss the potential and challenges of novel nanotechnology strategies to prevent ROS formation in obesity-associated HCC.


Assuntos
Carcinoma Hepatocelular , Humanos , Neoplasias Hepáticas , Estresse Oxidativo , Transdução de Sinais
4.
Biochim Biophys Acta Bioenerg ; 1862(4): 148367, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33412125

RESUMO

The evolutionarily conserved soluble adenylyl cyclase (sAC, ADCY10) mediates cAMP signaling exclusively in intracellular compartments. Because sAC activity is sensitive to local concentrations of ATP, bicarbonate, and free Ca2+, sAC is potentially an important metabolic sensor. Nonetheless, little is known about how sAC regulates energy metabolism in intact cells. In this study, we demonstrated that both pharmacological and genetic suppression of sAC resulted in increased lactate secretion and decreased pyruvate secretion in multiple cell lines and primary cultures of mouse hepatocytes and cholangiocytes. The increased extracellular lactate-to-pyruvate ratio upon sAC suppression reflected an increased cytosolic free [NADH]/[NAD+] ratio, which was corroborated by using the NADH/NAD+ redox biosensor Peredox-mCherry. Mechanistic studies in permeabilized HepG2 cells showed that sAC inhibition specifically suppressed complex I of the mitochondrial respiratory chain. A survey of cAMP effectors revealed that only selective inhibition of exchange protein activated by cAMP 1 (Epac1), but not protein kinase A (PKA) or Epac2, suppressed complex I-dependent respiration and significantly increased the cytosolic NADH/NAD+ redox state. Analysis of the ATP production rate and the adenylate energy charge showed that inhibiting sAC reciprocally affects ATP production by glycolysis and oxidative phosphorylation while maintaining cellular energy homeostasis. In conclusion, our study shows that, via the regulation of complex I-dependent mitochondrial respiration, sAC-Epac1 signaling regulates the cytosolic NADH/NAD+ redox state, and coordinates oxidative phosphorylation and glycolysis to maintain cellular energy homeostasis. As such, sAC is effectively a bioenergetic switch between aerobic glycolysis and oxidative phosphorylation at the post-translational level.


Assuntos
Adenilil Ciclases/metabolismo , Citosol/metabolismo , Glicólise , NAD/metabolismo , Oxirredução , Fosforilação Oxidativa , Adenilil Ciclases/genética , Células Hep G2 , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , NAD/genética , Consumo de Oxigênio
5.
Pestic Biochem Physiol ; 164: 183-190, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32284125

RESUMO

Imidacloprid (IMD) is a neonicotinoid insecticide widely used in crops, pets, and on farm animals for pest control, which can cause hepatotoxicity in animals and humans. In a previous study using isolated rat liver mitochondria, we observed that IMD inhibited the activity of FoF1-ATP synthase. The aim of this study was to evaluate the effects of IMD on rat isolated hepatocytes and perfused rat liver, besides the influence of its biotransformation on the toxicological potential. For the latter goal, rats were pretreated with dexamethasone or phenobarbital, two classical cytochrome P-450 stimulators, before hepatocytes isolation or liver perfusion. IMD (150 and 200 µM) reduced state 3 mitochondrial respiration in digitonin-permeabilized cells that were energized with glutamate plus malate but did not dissipate the mitochondrial membrane potential. In intact (non-permeabilized) hepatocytes, the intracellular ATP concentration and cell viability were reduced when high IMD concentrations were used (1.5-3.0 mM), and only in cells isolated from dexamethasone-pretreated rats, revealing that IMD biotransformation increases its toxicity and that IMD itself affects isolated mitochondria or mitochondria in permeabilized hepatocytes in concentrations that do not affect mitochondrial function in intact hepatocytes. Coherently, in the prefused liver, IMD (150 and 250 µM) inhibited gluconeogenesis from alanine, but without affecting oxygen consumption and urea production, indicating that such effect was not of mitochondrial origin. The gluconeogenesis inhibition was incomplete and occurred only when the rats were pretreated with phenobarbital, signs that IMD biotransformation was involved in the observed effect. Our findings reveal that changes in hepatic energy metabolism may be acutely implicated in the hepatotoxicity of IMD only when animals and humans are exposed to high levels of this compound, and that IMD metabolites seem to be the main cause for its toxicity.


Assuntos
Hepatócitos , Fígado , Animais , Biotransformação , Neonicotinoides , Nitrocompostos , Ratos
6.
Hepatol Commun ; 2(3): 299-312, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29507904

RESUMO

Primary hepatocyte culture is an important in vitro system for the study of liver functions. In vivo, hepatocytes have high oxidative metabolism. However, oxygen supply by means of diffusion in in vitro static cultures is much less than that by blood circulation in vivo. Therefore, we investigated whether hypoxia contributes to dedifferentiation and deregulated metabolism in cultured hepatocytes. To this end, murine hepatocytes were cultured under static or shaken (60 revolutions per minute) conditions in a collagen sandwich. The effect of hypoxia on hepatocyte cultures was examined by metabolites in media and cells, hypoxia-inducible factors (HIF)-1/2α western blotting, and real-time quantitative polymerase chain reaction for HIF target genes and key genes of glucose and lipid metabolism. Hepatocytes in shaken cultures showed lower glycolytic activity and triglyceride accumulation than static cultures, compatible with improved oxygen delivery and mitochondrial energy metabolism. Consistently, static cultures displayed significant HIF-2α expression, which was undetectable in freshly isolated hepatocytes and shaken cultures. Transcript levels of HIF target genes (glyceraldehyde 3-phosphate dehydrogenase [Gapdh], glucose transporter 1 [Glut1], pyruvate dehydrogenase kinase 1 [Pdk1], and lactate dehydrogenase A [Ldha]) and key genes of lipid metabolism, such as carnitine palmitoyltransferase 1 (Cpt1), apolipoprotein B (Apob), and acetyl-coenzyme A carboxylase 1 (Acc1), were significantly lower in shaken compared to static cultures. Moreover, expression of hepatocyte nuclear factor 4α (Hnf4α) and farnesoid X receptor (Fxr) were better preserved in shaken cultures as a result of improved oxygen delivery. We further revealed that HIF-2 signaling was involved in hypoxia-induced down-regulation of Fxr. Conclusion: Primary murine hepatocytes in static culture suffer from hypoxia. Improving oxygenation by simple shaking prevents major changes in expression of metabolic enzymes and aberrant triglyceride accumulation; in addition, it better maintains the differentiation state of the cells. The shaken culture is, therefore, an advisable strategy for the use of primary hepatocytes as an in vitro model. (Hepatology Communications 2018;2:299-312).

7.
Biochim Biophys Acta ; 1862(11): 2054-2062, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27475255

RESUMO

Menopause is often followed by obesity and, related to this, non-alcoholic fatty liver disease (NAFLD). Two bile acid (BA) receptors, farnesoid X receptor (FXR) and G-protein-coupled receptor TGR5, have emerged as putative therapeutic targets for obesity and NAFLD. AIM OF THIS STUDY: to evaluate the efficacy of selective agonists INT747/obeticholic acid (FXR) and INT777 (TGR5) as novel treatments for the metabolic effects of oestrogen deficiency. Ovariectomized (OVX) or sham-operated (SHAM) mice were fed a high-fat diet (HFD) for 5weeks. During the last 4weeks two groups of OVX and SHAM mice received either INT747- or INT777-supplemented HFD. OVX mice had significantly higher bodyweight gain than SHAM mice, which was attenuated by INT747- or INT777-treatment. No significant changes in food intake or physical activity were found. OVX mice had significantly lower energy expenditure than SHAM mice; INT747- and INT777-treated OVX mice had intermediate energy expenditure. Liver triglyceride and cholesterol content was significantly increased in OVX compared to SHAM mice, which was normalized by INT747- or INT777-treatment. Significant changes in metabolic gene expression were found in liver (Cpt1, Acox1), muscle (Ucp3, Pdk4, Cpt1, Acox1, Fasn, Fgf21), brown adipocytes (Dio2) and white adipocytes (c/EBPα, Pparγ, Adipoq). For the first time, expression of FXR and induction of its target gene Pltp1 was shown in skeletal muscle. BA receptor agonists are suitable therapeutics to correct postmenopausal metabolic changes in an OVX mouse model. Potential mechanisms include increased energy expenditure and changes in expression patterns of key metabolic genes in liver, muscle and adipose tissues.

8.
Hepatology ; 62(1): 207-19, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25641256

RESUMO

UNLABELLED: The Na(+) -taurocholate cotransporting polypeptide (NTCP) mediates uptake of conjugated bile acids (BAs) and is localized at the basolateral membrane of hepatocytes. It has recently been recognized as the receptor mediating hepatocyte-specific entry of hepatitis B virus and hepatitis delta virus. Myrcludex B, a peptide inhibitor of hepatitis B virus entry, is assumed to specifically target NTCP. Here, we investigated BA transport and Myrcludex B binding in the first Slc10a1-knockout mouse model (Slc10a1 encodes NTCP). Primary Slc10a1(-/-) hepatocytes showed absence of sodium-dependent taurocholic acid uptake, whereas sodium-independent taurocholic acid uptake was unchanged. In vivo, this was manifested as a decreased serum BA clearance in all knockout mice. In a subset of mice, NTCP deficiency resulted in markedly elevated total serum BA concentrations, mainly composed of conjugated BAs. The hypercholanemic phenotype was rapidly triggered by a diet supplemented with ursodeoxycholic acid. Biliary BA output remained intact, while fecal BA excretion was reduced in hypercholanemic Slc10a1(-/-) mice, explained by increased Asbt and Ostα/ß expression. These mice further showed reduced Asbt expression in the kidney and increased renal BA excretion. Hepatic uptake of conjugated BAs was potentially affected by down-regulation of OATP1A1 and up-regulation of OATP1A4. Furthermore, sodium-dependent taurocholic acid uptake was inhibited by Myrcludex B in wild-type hepatocytes, while Slc10a1(-/-) hepatocytes were insensitive to Myrcludex B. Finally, positron emission tomography showed a complete abrogation of hepatic binding of labeled Myrcludex B in Slc10a1(-/-) mice. CONCLUSION: The Slc10a1-knockout mouse model supports the central role of NTCP in hepatic uptake of conjugated BAs and hepatitis B virus preS1/Myrcludex B binding in vivo; the NTCP-independent hepatic BA uptake machinery maintains a (slower) enterohepatic circulation of BAs, although it is occasionally insufficient to clear BAs from the circulation.


Assuntos
Vírus da Hepatite B/metabolismo , Fígado/metabolismo , Transportadores de Ânions Orgânicos Dependentes de Sódio/metabolismo , Simportadores/metabolismo , Ácido Taurocólico/sangue , Proteínas do Envelope Viral/metabolismo , Animais , Bile/química , Fezes/química , Feminino , Lipopeptídeos , Masculino , Camundongos Knockout , Transportadores de Ânions Orgânicos Dependentes de Sódio/genética , Fenótipo , Simportadores/genética , Ácido Taurocólico/urina , Ácido Ursodesoxicólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA