Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Med Chem ; 67(5): 3467-3503, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38372781

RESUMO

Controlling malaria requires new drugs against Plasmodium falciparum. The P. falciparum cGMP-dependent protein kinase (PfPKG) is a validated target whose inhibitors could block multiple steps of the parasite's life cycle. We defined the structure-activity relationship (SAR) of a pyrrole series for PfPKG inhibition. Key pharmacophores were modified to enable full exploration of chemical diversity and to gain knowledge about an ideal core scaffold. In vitro potency against recombinant PfPKG and human PKG were used to determine compound selectivity for the parasite enzyme. P. berghei sporozoites and P. falciparum asexual blood stages were used to assay multistage antiparasitic activity. Cellular specificity of compounds was evaluated using transgenic parasites expressing PfPKG carrying a substituted "gatekeeper" residue. The structure of PfPKG bound to an inhibitor was solved, and modeling using this structure together with computational tools was utilized to understand SAR and establish a rational strategy for subsequent lead optimization.


Assuntos
Antimaláricos , Malária Falciparum , Animais , Humanos , Antimaláricos/farmacologia , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum , Animais Geneticamente Modificados , Relação Estrutura-Atividade
2.
ACS Omega ; 8(7): 6597-6607, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36844602

RESUMO

Chlamydiae are obligate intracellular Gram-negative bacteria and widespread pathogens in humans and animals. Broad-spectrum antibiotics are currently used to treat chlamydial infections. However, broad-spectrum drugs also kill beneficial bacteria. Recently, two generations of benzal acylhydrazones have been shown to selectively inhibit chlamydiae without toxicity to human cells and lactobacilli, which are dominating, beneficial bacteria in the vagina of reproductive-age women. Here, we report the identification of two acylpyrazoline-based third-generation selective antichlamydials (SACs). With minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) of 10-25 µM against Chlamydia trachomatis and Chlamydia muridarum, these new antichlamydials are 2- to 5-fold more potent over the benzal acylhydrazone-based second-generation selective antichlamydial lead SF3. Both acylpyrazoline-based SACs are well tolerated by Lactobacillus, Escherichia coli, Klebsiella, and Salmonella as well as host cells. These third-generation selective antichlamydials merit further evaluation for therapeutic application.

3.
J Med Chem ; 64(4): 2024-2045, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33538587

RESUMO

We identified a set of thiosemicarbazone (TSC) metal ion chelators that reactivate specific zinc-deficient p53 mutants using a mechanism called zinc metallochaperones (ZMCs) that restore zinc binding by shuttling zinc into cells. We defined biophysical and cellular assays necessary for structure-activity relationship studies using this mechanism. We investigated an alternative class of zinc scaffolds that differ from TSCs by substitution of the thiocarbamoyl moiety with benzothiazolyl, benzoxazolyl, and benzimidazolyl hydrazones. Members of this series bound zinc with similar affinity and functioned to reactivate mutant p53 comparable to the TSCs. Acute toxicity and efficacy assays in rodents demonstrated C1 to be significantly less toxic than the TSCs while demonstrating equivalent growth inhibition. We identified C85 as a ZMC with diminished copper binding that functions as a chemotherapy and radiation sensitizer. We conclude that the benzothiazolyl, benzoxazolyl, and benzimidazolyl hydrazones can function as ZMCs to reactivate mutant p53 in vitro and in vivo.


Assuntos
Benzotiazóis/uso terapêutico , Benzoxazóis/uso terapêutico , Quelantes/uso terapêutico , Hidrazonas/uso terapêutico , Proteína Supressora de Tumor p53/metabolismo , Zinco/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Benzotiazóis/síntese química , Benzotiazóis/farmacologia , Benzoxazóis/síntese química , Benzoxazóis/farmacologia , Linhagem Celular Tumoral , Quelantes/síntese química , Quelantes/farmacologia , Humanos , Hidrazonas/síntese química , Hidrazonas/farmacologia , Camundongos Nus , Estrutura Molecular , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Target Oncol ; 12(4): 449-462, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28589491

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) represents one of the most lethal cancers worldwide due to therapy resistance and disease recurrence. Tumor relapse following treatment could be driven by the persistence of liver cancer stem-like cells (CSCs). The protein BMI1 is a member of the polycomb epigenetic factors governing cellular self-renewal, proliferation, and stemness maintenance. BMI1 expression also correlates with poor patient survival in various cancer types. OBJECTIVE: We aimed to elucidate the extent to which BMI1 can be used as a potential therapeutic target for CSC eradication in HCC. METHODS: We have recently participated in characterizing the first known pharmacological small molecule inhibitor of BMI1. Here, we synthesized a panel of novel BMI1 inhibitors and examined their ability to alter cellular growth and eliminate cancer progenitor/stem-like cells in HCC with different p53 backgrounds. RESULTS: Among various molecules examined, RU-A1 particularly downregulated BMI1 expression, impaired cell viability, reduced cell migration, and sensitized HCC cells to 5-fluorouracil (5-FU) in vitro. Notably, long-term analysis of HCC survival showed that, unlike chemotherapy, RU-A1 effectively reduced CSC content, even as monotherapy. BMI1 inhibition with RU-A1 diminished the number of stem-like cells in vitro more efficiently than the model compound C-209, as demonstrated by clonogenic assays and impairment of CSC marker expression. Furthermore, xenograft assays in zebrafish showed that RU-A1 abrogated tumor growth in vivo. CONCLUSIONS: This study demonstrates the ability to identify agents with the propensity for targeting CSCs in HCC that could be explored as novel treatments in the clinical setting.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Complexo Repressor Polycomb 1/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Antineoplásicos/química , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Células HEK293 , Células Hep G2 , Humanos , Imuno-Histoquímica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Complexo Repressor Polycomb 1/biossíntese , Complexo Repressor Polycomb 1/genética , Bibliotecas de Moléculas Pequenas/química , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
5.
Mol Cancer ; 15: 27, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-27048361

RESUMO

BACKGROUND: Bone morphogenetic proteins (BMP) are embryonic proteins that are part of the transforming growth factor (TGFß) superfamily, which are aberrantly expressed in many carcinomas. Inhibition of BMP receptors with small molecule inhibitors decreases growth and induces death of lung cancer cells, which involves the downregulation of Id1 and Id3 by a Smad dependent mechanism. Developmentally, BMP and TGFß signaling utilizes Smad-1/5 independent mechanisms to stabilize the expression of X-linked inhibitor of apoptosis protein (XIAP) and activate TGFß activated kinase 1 (TAK1), which are known to be potent inhibitors of apoptosis. The role of BMP signaling in regulating XIAP and TAK1 in cancer cells is poorly understood. Furthermore, the interaction between the BMP and TGFß signaling cascades in regulating the activation of TAK1 in cancer cells has not been elucidated. METHODS: Feedback regulation between the BMP and TGFß signaling pathways and their regulation of XIAP, TAK1, and Id1 were examined in lung cancer cells utilizing siRNA and inhibitors targeting BMP type I receptors, inhibitors of BMP and TGFß type I receptors, and an inhibitor of BMP and TGFß type I and type II receptors. RESULTS: We show that upon inhibition of BMP signaling in lung cancer cells, the TGFß signaling cascade is activated. Both the BMP and TGFß pathways activate TAK1, which then increases the expression of Id1. Inhibition of TGFß signaling increased Id1 expression except when BMP signaling is suppressed, which then causes a dose-related decrease in the expression of Id1. Inhibition of both BMP and TGFß signaling enhances the downregulation of TAK1. Our data also suggests that the blockade of the BMP type II receptor enhances the downregulation XIAP, which is important in decreasing the activity of TAK1. Knockdown studies demonstrate that both XIAP and TAK1 regulate the survival of lung cancer cells. CONCLUSIONS: This paper highlights that targeting the BMP and TGFß type I and type II receptors causes a downregulation of XIAP, TAK1, and Id1 leading to cell death of lung cancer cells. Small molecule inhibitors targeting the BMP and TGFß receptors represents a potential novel means to treat cancer patients.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Regulação para Baixo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , MAP Quinase Quinase Quinases/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Feminino , Humanos , Proteína 1 Inibidora de Diferenciação/metabolismo , Concentração Inibidora 50 , Camundongos Nus , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Bibliotecas de Moléculas Pequenas/farmacocinética , Bibliotecas de Moléculas Pequenas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases da Família src/metabolismo
6.
Mol Pharmacol ; 87(5): 825-31, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25710967

RESUMO

p53 is a Zn(2+)-dependent tumor suppressor inactivated in >50% of human cancers. The most common mutation, R175H, inactivates p53 by reducing its affinity for the essential zinc ion, leaving the mutant protein unable to bind the metal in the low [Zn(2+)]free environment of the cell. The exploratory cancer drug zinc metallochaperone-1 (ZMC1) was previously demonstrated to reactivate this and other Zn(2+)-binding mutants by binding Zn(2+) and buffering it to a level such that Zn(2+) can repopulate the defective binding site, but how it accomplishes this in the context of living cells and organisms is unclear. In this study, we demonstrated that ZMC1 increases intracellular [Zn(2+)]free by functioning as a Zn(2+) ionophore, binding Zn(2+) in the extracellular environment, diffusing across the plasma membrane, and releasing it intracellularly. It raises intracellular [Zn(2+)]free in cancer (TOV112D) and noncancer human embryonic kidney cell line 293 to 15.8 and 18.1 nM, respectively, with half-times of 2-3 minutes. These [Zn(2+)]free levels are predicted to result in ∼90% saturation of p53-R175H, thus accounting for its observed reactivation. This mechanism is supported by the X-ray crystal structure of the [Zn(ZMC1)2] complex, which demonstrates structural and chemical features consistent with those of known metal ionophores. These findings provide a physical mechanism linking zinc metallochaperone-1 in both in vitro and in vivo activities and define the remaining critical parameter necessary for developing synthetic metallochaperones for clinical use.


Assuntos
Transporte Biológico/fisiologia , Proteínas de Transporte/metabolismo , Ionóforos/metabolismo , Metalochaperonas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Zinco/metabolismo , Sítios de Ligação , Linhagem Celular , Membrana Celular/metabolismo , Células HEK293 , Humanos , Mutação/genética , Conformação Proteica , Proteína Supressora de Tumor p53/genética
7.
J Am Chem Soc ; 129(46): 14463-9, 2007 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-17973389

RESUMO

A thorough investigation of a regio- and stereospecific aziridine ring opening reaction presents new synthetic technology for the construction of a variety of quaternary beta-substituted-alpha-amino functional groups. Mild, metal-free reaction conditions allow for application in highly functionalized systems. This reaction has been applied to the challenging stereoselective formation of tertiary alkyl-aryl ethers. The strategy for the formation of these hindered ethers has been investigated using a variety of functionalized aziridines and phenols to determine the scope of the reaction. Other nucleophiles, such as thiolate, azide, and chloride, have also been examined to encompass the synthesis of a broader range of functionalities. This aziridine ring opening reaction manifold has demonstrated utility in assembling: beta-substituted-alpha-amino carboxamides, beta-substituted-alpha-amino esters, beta-substituted-alpha-amino silyl ethers, beta-thio-alpha-amino carboxamides, beta-azido-alpha-amino carboxamides, and beta-halo-alpha-amino carboxamides. Studies to probe the effect of the aziridine substitution patterns show that alkyl aziridines display similar reactivity to alkynyl aziridines, giving insight into mechanistic possibilities.


Assuntos
Amidas/síntese química , Aziridinas/química , Éteres/síntese química , Alcanos/química , Alcinos/química , Aminas/química , Azidas/química , Hidrocarbonetos Halogenados/química , Modelos Químicos , Silanos/química , Estereoisomerismo , Compostos de Sulfidrila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA