Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell Death Dis ; 15(5): 379, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816421

RESUMO

CSMD1 (Cub and Sushi Multiple Domains 1) is a well-recognized regulator of the complement cascade, an important component of the innate immune response. CSMD1 is highly expressed in the central nervous system (CNS) where emergent functions of the complement pathway modulate neural development and synaptic activity. While a genetic risk factor for neuropsychiatric disorders, the role of CSMD1 in neurodevelopmental disorders is unclear. Through international variant sharing, we identified inherited biallelic CSMD1 variants in eight individuals from six families of diverse ancestry who present with global developmental delay, intellectual disability, microcephaly, and polymicrogyria. We modeled CSMD1 loss-of-function (LOF) pathogenesis in early-stage forebrain organoids differentiated from CSMD1 knockout human embryonic stem cells (hESCs). We show that CSMD1 is necessary for neuroepithelial cytoarchitecture and synchronous differentiation. In summary, we identified a critical role for CSMD1 in brain development and biallelic CSMD1 variants as the molecular basis of a previously undefined neurodevelopmental disorder.


Assuntos
Deficiência Intelectual , Proteínas de Membrana , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Feminino , Masculino , Transtornos do Neurodesenvolvimento/genética , Alelos , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/patologia , Criança , Pré-Escolar , Diferenciação Celular/genética , Proteínas Supressoras de Tumor
3.
J Clin Endocrinol Metab ; 107(11): 3035-3044, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36071555

RESUMO

OBJECTIVE: The purpose of this study is to report development of a malignant testicular germ cell tumor (GCT) in 2 young adult males with familial male-limited precocious puberty (FMPP) because of LHCGR pathogenic variants in 2 families. Secondarily, to study the possible relation between FMPP and testicular tumors and to investigate whether FMPP might predispose to development of malignant testicular tumors in adulthood a literature review is conducted. METHODS: Data on 6 cases in 2 families are obtained from the available medical records. In addition, a database search is performed in Cochrane, PubMed, and Embase for studies that report on a possible link between FMPP and testicular tumors. RESULTS: The characteristics of 6 males with FMPP based on activating LH receptor (LHCGR) germline pathogenic variants are described, as are details of the testicular GCTs. Furthermore, a literature review identified 4 more patients with signs of FMPP and a (precursor of) testicular GCT in adolescence or adulthood (age 15-35 years). Additionally, 12 patients with signs of precocious puberty and, simultaneously, occurrence of a Leydig cell adenoma or Leydig cell hyperplasia are reported. CONCLUSION: There is a strong suggestion that FMPP might increase the risk of development of testicular GCTs in early adulthood compared with the risk in the general population. Therefore, prolonged patient monitoring from mid-pubertal age onward including instruction for self-examination and periodic testicular ultrasound investigation in patients with a germline LHCGR pathogenic variant might contribute to early detection and thus early treatment of testicular GCT.


Assuntos
Puberdade Precoce , Neoplasias Testiculares , Adolescente , Adulto , Humanos , Masculino , Adulto Jovem , Puberdade Precoce/genética , Neoplasias Testiculares/diagnóstico , Neoplasias Testiculares/genética , Neoplasias Testiculares/patologia
4.
Am J Hum Genet ; 109(2): 361-372, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051358

RESUMO

Nuclear deubiquitinase BAP1 (BRCA1-associated protein 1) is a core component of multiprotein complexes that promote transcription by reversing the ubiquitination of histone 2A (H2A). BAP1 is a tumor suppressor whose germline loss-of-function variants predispose to cancer. To our knowledge, there are very rare examples of different germline variants in the same gene causing either a neurodevelopmental disorder (NDD) or a tumor predisposition syndrome. Here, we report a series of 11 de novo germline heterozygous missense BAP1 variants associated with a rare syndromic NDD. Functional analysis showed that most of the variants cannot rescue the consequences of BAP1 inactivation, suggesting a loss-of-function mechanism. In T cells isolated from two affected children, H2A deubiquitination was impaired. In matching peripheral blood mononuclear cells, histone H3 K27 acetylation ChIP-seq indicated that these BAP1 variants induced genome-wide chromatin state alterations, with enrichment for regulatory regions surrounding genes of the ubiquitin-proteasome system (UPS). Altogether, these results define a clinical syndrome caused by rare germline missense BAP1 variants that alter chromatin remodeling through abnormal histone ubiquitination and lead to transcriptional dysregulation of developmental genes.


Assuntos
Proteína BRCA1/genética , Mutação em Linhagem Germinativa , Mutação com Perda de Função , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Adolescente , Proteína BRCA1/imunologia , Criança , Pré-Escolar , Cromatina/química , Cromatina/imunologia , Montagem e Desmontagem da Cromatina/genética , Montagem e Desmontagem da Cromatina/imunologia , Família , Feminino , Regulação da Expressão Gênica , Heterozigoto , Histonas/genética , Histonas/imunologia , Fator C1 de Célula Hospedeira/genética , Fator C1 de Célula Hospedeira/imunologia , Humanos , Lactente , Masculino , Transtornos do Neurodesenvolvimento/imunologia , Transtornos do Neurodesenvolvimento/patologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/imunologia , Linfócitos T/imunologia , Linfócitos T/patologia , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/imunologia , Ubiquitina/genética , Ubiquitina/imunologia , Ubiquitina Tiolesterase/deficiência , Ubiquitina Tiolesterase/imunologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia , Ubiquitinação
5.
NPJ Genom Med ; 6(1): 92, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750377

RESUMO

TET3 encodes an essential dioxygenase involved in epigenetic regulation through DNA demethylation. TET3 deficiency, or Beck-Fahrner syndrome (BEFAHRS; MIM: 618798), is a recently described neurodevelopmental disorder of the DNA demethylation machinery with a nonspecific phenotype resembling other chromatin-modifying disorders, but inconsistent variant types and inheritance patterns pose diagnostic challenges. Given TET3's direct role in regulating 5-methylcytosine and recent identification of syndrome-specific DNA methylation profiles, we analyzed genome-wide DNA methylation in whole blood of TET3-deficient individuals and identified an episignature that distinguishes affected and unaffected individuals and those with mono-allelic and bi-allelic pathogenic variants. Validation and testing of the episignature correctly categorized known TET3 variants and determined pathogenicity of variants of uncertain significance. Clinical utility was demonstrated when the episignature alone identified an affected individual from over 1000 undiagnosed cases and was confirmed upon distinguishing TET3-deficient individuals from those with 46 other disorders. The TET3-deficient signature - and the signature resulting from activating mutations in DNMT1 which normally opposes TET3 - are characterized by hypermethylation, which for BEFAHRS involves CpG sites that may be biologically relevant. This work expands the role of epi-phenotyping in molecular diagnosis and reveals genome-wide DNA methylation profiling as a quantitative, functional readout for characterization of this new biochemical category of disease.

7.
Birth Defects Res ; 112(18): 1495-1504, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33179873

RESUMO

BACKGROUND: The VACTERL association (VACTERL) includes at least three of these congenital anomalies: vertebral, anal, cardiac, trachea-esophageal, renal, and limb anomalies. Assisted reproductive techniques (ART), pregestational diabetes mellitus, and chronic lower obstructive pulmonary disorders (CLOPD) have been associated with VACTERL. We aimed to replicate these findings and were interested in additional maternal risk factors. METHODS: A case-control study using self-administered questionnaires was performed including 142 VACTERL cases and 2,135 population-based healthy controls. Multivariable logistic regression analyses were performed to estimate confounder adjusted odds ratios (aOR) and 95% confidence intervals (95%CI). RESULTS: Parents who used invasive ART had an increased risk of VACTERL in offspring (aOR 4.4 [95%CI 2.1-8.8]), whereas the increased risk for mothers with CLOPD could not be replicated. None of the case mothers had pregestational diabetes mellitus. Primiparity (1.5 [1.1-2.1]) and maternal pregestational overweight and obesity (1.8 [1.2-2.8] and 1.8 [1.0-3.4]) were associated with VACTERL. Consistent folic acid supplement use during the advised periconceptional period may reduce the risk of VACTERL (0.5 [0.3-1.0]). Maternal smoking resulted in an almost twofold increased risk of VACTERL. CONCLUSION: We identified invasive ART, primiparity, pregestational overweight and obesity, lack of folic acid supplement use, and smoking as risk factors for VACTERL.


Assuntos
Deformidades Congênitas dos Membros , Traqueia , Canal Anal/anormalidades , Estudos de Casos e Controles , Esôfago/anormalidades , Feminino , Cardiopatias Congênitas , Humanos , Rim/anormalidades , Deformidades Congênitas dos Membros/epidemiologia , Deformidades Congênitas dos Membros/etiologia , Coluna Vertebral/anormalidades , Traqueia/anormalidades
8.
Eur J Hum Genet ; 28(5): 674-678, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804630

RESUMO

We report here a de novo missense variant in HIST1H4J resulting in a complex syndrome combining growth delay, microcephaly and intellectual disability. Trio whole exome sequencing (WES) revealed that the proband was heterozygous for a de novo c.274 A > G p.(K91E) variant in HIST1H4J, a gene not yet associated with human disease. The patient presented with profound intellectual disability, microcephaly, and dysmorphic facial features. Functional consequences of the identified de novo missense variant were evaluated in zebrafish embryos, where they affected general development, especially resulting in defective head organs and reduced body axis length. Our results show that the monoallelic p.K91E substitution on HIST1H4J underlies a human syndrome that is genetically and phenotypically akin to the HIST1H4C-associated neurodevelopmental disorder resulting from p.K91A and p.K91Q substitions in HIST1H4C. The highly overlapping patient phenotypes highlight functional similarities between HIST1H4J and HIST1H4C perturbations, establishing the singular importance of K91 across histone H4 genes for vertebrate development.


Assuntos
Anormalidades Craniofaciais/genética , Deficiências do Desenvolvimento/genética , Modelos Animais de Doenças , Histonas/genética , Deficiência Intelectual/genética , Adolescente , Animais , Anormalidades Craniofaciais/patologia , Deficiências do Desenvolvimento/patologia , Histonas/metabolismo , Humanos , Deficiência Intelectual/patologia , Masculino , Mutação de Sentido Incorreto , Síndrome , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
Am J Med Genet A ; 179(10): 2075-2082, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31361404

RESUMO

Zinc finger protein 462 (ZNF462) is a relatively newly discovered vertebrate specific protein with known critical roles in embryonic development in animal models. Two case reports and a case series study have described the phenotype of 10 individuals with ZNF462 loss of function variants. Herein, we present 14 new individuals with loss of function variants to the previous studies to delineate the syndrome of loss of function in ZNF462. Collectively, these 24 individuals present with recurring phenotypes that define a multiple congenital anomaly syndrome. Most have some form of developmental delay (79%) and a minority has autism spectrum disorder (33%). Characteristic facial features include ptosis (83%), down slanting palpebral fissures (58%), exaggerated Cupid's bow/wide philtrum (54%), and arched eyebrows (50%). Metopic ridging or craniosynostosis was found in a third of study participants and feeding problems in half. Other phenotype characteristics include dysgenesis of the corpus callosum in 25% of individuals, hypotonia in half, and structural heart defects in 21%. Using facial analysis technology, a computer algorithm applying deep learning was able to accurately differentiate individuals with ZNF462 loss of function variants from individuals with Noonan syndrome and healthy controls. In summary, we describe a multiple congenital anomaly syndrome associated with haploinsufficiency of ZNF462 that has distinct clinical characteristics and facial features.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Criança , Pré-Escolar , Fácies , Feminino , Humanos , Lactente , Masculino , Fenótipo , Síndrome
11.
Hum Mol Genet ; 26(23): 4689-4698, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973399

RESUMO

The rare recessive developmental disorder Trichothiodystrophy (TTD) is characterized by brittle hair and nails. Patients also present a variable set of poorly explained additional clinical features, including ichthyosis, impaired intelligence, developmental delay and anemia. About half of TTD patients are photosensitive due to inherited defects in the DNA repair and transcription factor II H (TFIIH). The pathophysiological contributions of unrepaired DNA lesions and impaired transcription have not been dissected yet. Here, we functionally characterize the consequence of a homozygous missense mutation in the general transcription factor II E, subunit 2 (GTF2E2/TFIIEß) of two unrelated non-photosensitive TTD (NPS-TTD) families. We demonstrate that mutant TFIIEß strongly reduces the total amount of the entire TFIIE complex, with a remarkable temperature-sensitive transcription defect, which strikingly correlates with the phenotypic aggravation of key clinical symptoms after episodes of high fever. We performed induced pluripotent stem (iPS) cell reprogramming of patient fibroblasts followed by in vitro erythroid differentiation to translate the intriguing molecular defect to phenotypic expression in relevant tissue, to disclose the molecular basis for some specific TTD features. We observed a clear hematopoietic defect during late-stage differentiation associated with hemoglobin subunit imbalance. These new findings of a DNA repair-independent transcription defect and tissue-specific malfunctioning provide novel mechanistic insight into the etiology of TTD.


Assuntos
Fatores de Transcrição TFII/genética , Síndromes de Tricotiodistrofia/genética , Diferenciação Celular/genética , Reprogramação Celular/genética , DNA Helicases/genética , Reparo do DNA , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Mutação , Mutação de Sentido Incorreto , Especificidade de Órgãos , Linhagem , Fatores de Transcrição TFII/metabolismo , Transcrição Gênica , Síndromes de Tricotiodistrofia/metabolismo , Síndromes de Tricotiodistrofia/patologia
12.
Nat Genet ; 49(11): 1642-1646, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28920961

RESUMO

Covalent modifications of histones have an established role as chromatin effectors, as they control processes such as DNA replication and transcription, and repair or regulate nucleosomal structure. Loss of modifications on histone N tails, whether due to mutations in genes belonging to histone-modifying complexes or mutations directly affecting the histone tails, causes developmental disorders or has a role in tumorigenesis. More recently, modifications affecting the globular histone core have been uncovered as being crucial for DNA repair, pluripotency and oncogenesis. Here we report monoallelic missense mutations affecting lysine 91 in the histone H4 core (H4K91) in three individuals with a syndrome of growth delay, microcephaly and intellectual disability. Expression of the histone H4 mutants in zebrafish embryos recapitulates the developmental anomalies seen in the patients. We show that the histone H4 alterations cause genomic instability, resulting in increased apoptosis and cell cycle progression anomalies during early development. Mechanistically, our findings indicate an important role for the ubiquitination of H4K91 in genomic stability during embryonic development.


Assuntos
Reparo do DNA , Deficiências do Desenvolvimento/genética , Histonas/genética , Deficiência Intelectual/genética , Microcefalia/genética , Mutação de Sentido Incorreto , Adolescente , Animais , Apoptose , Pontos de Checagem do Ciclo Celular , Criança , Dano ao DNA , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Embrião não Mamífero , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Instabilidade Genômica , Mutação em Linhagem Germinativa , Histonas/metabolismo , Humanos , Lactente , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Microcefalia/diagnóstico , Microcefalia/metabolismo , Microcefalia/patologia , Nucleossomos/química , Nucleossomos/metabolismo , Síndrome , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento
13.
J Biol Chem ; 292(30): 12621-12631, 2017 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-28584052

RESUMO

N-Acetylglucosamine (O-GlcNAc) transferase (OGT) regulates protein O-GlcNAcylation, an essential and dynamic post-translational modification. The O-GlcNAc modification is present on numerous nuclear and cytosolic proteins and has been implicated in essential cellular functions such as signaling and gene expression. Accordingly, altered levels of protein O-GlcNAcylation have been associated with developmental defects and neurodegeneration. However, mutations in the OGT gene have not yet been functionally confirmed in humans. Here, we report on two hemizygous mutations in OGT in individuals with X-linked intellectual disability (XLID) and dysmorphic features: one missense mutation (p.Arg284Pro) and one mutation leading to a splicing defect (c.463-6T>G). Both mutations reside in the tetratricopeptide repeats of OGT that are essential for substrate recognition. We observed slightly reduced levels of OGT protein and reduced levels of its opposing enzyme O-GlcNAcase in both patient-derived fibroblasts, but global O-GlcNAc levels appeared to be unaffected. Our data suggest that mutant cells attempt to maintain global O-GlcNAcylation by down-regulating O-GlcNAcase expression. We also found that the c.463-6T>G mutation leads to aberrant mRNA splicing, but no stable truncated protein was detected in the corresponding patient-derived fibroblasts. Recombinant OGT bearing the p.Arg284Pro mutation was prone to unfolding and exhibited reduced glycosylation activity against a complex array of glycosylation substrates and proteolytic processing of the transcription factor host cell factor 1, which is also encoded by an XLID-associated gene. We conclude that defects in O-GlcNAc homeostasis and host cell factor 1 proteolysis may play roles in mediation of XLID in individuals with OGT mutations.


Assuntos
Deficiência Intelectual/genética , Mutação , N-Acetilglucosaminiltransferases/genética , Células Cultivadas , Criança , Pré-Escolar , Clonagem Molecular , DNA/genética , DNA/metabolismo , Humanos , Deficiência Intelectual/metabolismo , Masculino , N-Acetilglucosaminiltransferases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Mol Syndromol ; 7(3): 153-9, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27587991

RESUMO

Tetraploid/diploid mosaicism is a rare chromosomal abnormality that is infrequently reported in patients with severe developmental delay, growth retardation, and short life span. Here, we present a 6-year-old patient with severe penoscrotal hypospadias and a coloboma of the left eye but with normal growth, normal psychomotor development, and without dysmorphisms. We considered a local, mosaic sex chromosomal aneuploidy as a possible cause of his genital anomaly and performed karyotyping in cultured fibroblasts from the genital skin, obtained during surgical correction. Tetraploid/diploid (92,XXYY/46,XY) mosaicism was found in 43/57 and 6/26 metaphases in 2 separate cultures, respectively. Buccal smear cells, blood lymphocytes, and cells from urine sediment all showed diploidy. We investigated whether this chromosomal abnormality could be found in other patients with severe hypospadias and karyotyped genital fibroblasts of 6 additional patients but found only low frequencies (<11%) of tetraploid cells, not statistically different from those found in control males with no hypospadias. This is the first time tetraploid mosaicism is found in such a high percentage in a patient without psychomotor retardation, dysmorphisms or growth delay. Although the relationship between this observed mosaicism in cultured cells and the underlying pathogenetic mechanism in penoscrotal hypospadias remains to be determined, our data clearly illustrate the power of cytogenetic techniques in detecting mosaicism compared to next-generation sequencing techniques, in which DNA pooled from multiple cells is used.

15.
Rheumatology (Oxford) ; 55(5): 902-10, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26867732

RESUMO

OBJECTIVE: To determine the genotype-phenotype association in patients with adenosine deaminase-2 (ADA2) deficiency due to identical homozygous R169Q mutations inCECR1 METHODS: We present a case series of nine ADA2-deficient patients with an identical homozygous R169Q mutation. Clinical and diagnostic data were collected and available MRI studies were reviewed. We performed genealogy and haplotype analyses and measured serum ADA2 activity. ADA2 activity values were correlated to clinical symptoms. RESULTS: Age of presentation differed widely between the nine presented patients (range: 0 months to 8 years). The main clinical manifestations were (hepato)splenomegaly (8/9), skin involvement (8/9) and neurological involvement (8/9, of whom 6 encountered stroke). Considerable variation was seen in type, frequency and intensity of other symptoms, which included aplastic anaemia, acute myeloid leukaemia and cutaneous ulcers. Common laboratory abnormalities included cytopenias and hypogammaglobulinaemia. ADA2 enzyme activity in patients was significantly decreased compared with healthy controls. ADA2 activity levels tended to be lower in patients with stroke compared with patients without stroke. Genealogical studies did not identify a common ancestor; however, based on allele frequency, a North-West European founder effect can be noted. Three patients underwent haematopoietic cell transplantation, after which ADA2 activity was restored and clinical symptoms resolved. CONCLUSION: This case series revealed large phenotypic variability in patients with ADA2 deficiency though they were homozygous for the same R169Q mutation inCECR1 Disease modifiers, including epigenetic and environmental factors, thus seem important in determining the phenotype. Furthermore, haematopoietic cell transplantation appears promising for those patients with a severe clinical phenotype.


Assuntos
Adenosina Desaminase/deficiência , Agamaglobulinemia/genética , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Mutação , Imunodeficiência Combinada Severa/genética , Adenosina Desaminase/sangue , Adenosina Desaminase/genética , Agamaglobulinemia/tratamento farmacológico , Criança , Pré-Escolar , Feminino , Efeito Fundador , Haplótipos , Homozigoto , Humanos , Imunossupressores/uso terapêutico , Lactente , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Linhagem , Fenótipo , Imunodeficiência Combinada Severa/tratamento farmacológico
16.
Kidney Int ; 89(2): 476-86, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26489027

RESUMO

The leading cause of end-stage renal disease in children is attributed to congenital anomalies of the kidney and urinary tract (CAKUT). Familial clustering and mouse models support the presence of monogenic causes. Genetic testing is insufficient as it mainly focuses on HNF1B and PAX2 mutations that are thought to explain CAKUT in 5­15% of patients. To identify novel, potentially pathogenic variants in additional genes, we designed a panel of genes identified from studies on familial forms of isolated or syndromic CAKUT and genes suggested by in vitro and in vivo CAKUT models. The coding exons of 208 genes were analyzed in 453 patients with CAKUT using next-generation sequencing. Rare truncating, splice-site variants, and non-synonymous variants, predicted to be deleterious and conserved, were prioritized as the most promising variants to have an effect on CAKUT. Previously reported disease-causing mutations were detected, but only five were fully penetrant causal mutations that improved diagnosis. We prioritized 148 candidate variants in 151 patients, found in 82 genes, for follow-up studies. Using a burden test, no significant excess of rare variants in any of the genes in our cohort compared with controls was found. Thus, in a study representing the largest set of genes analyzed in CAKUT patients to date, the contribution of previously implicated genes to CAKUT risk was significantly smaller than expected, and the disease may be more complex than previously assumed.


Assuntos
Anormalidades Urogenitais/genética , Éxons , Deleção de Genes , Humanos , Análise de Sequência de DNA
17.
Ned Tijdschr Geneeskd ; 160: A9500, 2015.
Artigo em Holandês | MEDLINE | ID: mdl-26934435

RESUMO

We describe a 4-month-old male infant with a ridge across the soles of both feet without clinical signs of illness. The abnormality was diagnosed as a precalcaneal congenital fibrolipomatous hamartoma.


Assuntos
Hamartoma/congênito , Calcanhar/anormalidades , Neoplasias Cutâneas/congênito , Hamartoma/diagnóstico , Humanos , Lactente , Masculino , Neoplasias Cutâneas/diagnóstico
18.
Eur J Hum Genet ; 23(1): 135-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24781760

RESUMO

MED13L haploinsufficiency syndrome has been described in two patients and is characterized by moderate intellectual disability (ID), conotruncal heart defects, facial abnormalities and hypotonia. Missense mutations in MED13L are linked to transposition of the great arteries and non-syndromal intellectual disability. Here we describe two novel patients with de novo MED13L aberrations. The first patient has a de novo mutation in the splice acceptor site of exon 5 of MED13L. cDNA analysis showed this mutation results in an in-frame deletion, removing 15 amino acids in middle of the conserved MED13L N-terminal domain. The second patient carries a de novo deletion of exons 6-20 of MED13L. Both patients show features of the MED13L haploinsufficiency syndrome, except for the heart defects, thus further confirming the existence of the MED13L haploinsufficiency syndrome.


Assuntos
Anormalidades Múltiplas/genética , Haploinsuficiência/genética , Complexo Mediador/genética , Anormalidades Múltiplas/diagnóstico , Processamento Alternativo , Pré-Escolar , Hibridização Genômica Comparativa , Exoma , Fácies , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Mutação , Fenótipo , Síndrome
19.
Lancet Neurol ; 13(1): 44-58, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24291220

RESUMO

BACKGROUND: Deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures (DOORS) syndrome is a rare autosomal recessive disorder of unknown cause. We aimed to identify the genetic basis of this syndrome by sequencing most coding exons in affected individuals. METHODS: Through a search of available case studies and communication with collaborators, we identified families that included at least one individual with at least three of the five main features of the DOORS syndrome: deafness, onychodystrophy, osteodystrophy, intellectual disability, and seizures. Participants were recruited from 26 centres in 17 countries. Families described in this study were enrolled between Dec 1, 2010, and March 1, 2013. Collaborating physicians enrolling participants obtained clinical information and DNA samples from the affected child and both parents if possible. We did whole-exome sequencing in affected individuals as they were enrolled, until we identified a candidate gene, and Sanger sequencing to confirm mutations. We did expression studies in human fibroblasts from one individual by real-time PCR and western blot analysis, and in mouse tissues by immunohistochemistry and real-time PCR. FINDINGS: 26 families were included in the study. We did exome sequencing in the first 17 enrolled families; we screened for TBC1D24 by Sanger sequencing in subsequent families. We identified TBC1D24 mutations in 11 individuals from nine families (by exome sequencing in seven families, and Sanger sequencing in two families). 18 families had individuals with all five main features of DOORS syndrome, and TBC1D24 mutations were identified in half of these families. The seizure types in individuals with TBC1D24 mutations included generalised tonic-clonic, complex partial, focal clonic, and infantile spasms. Of the 18 individuals with DOORS syndrome from 17 families without TBC1D24 mutations, eight did not have seizures and three did not have deafness. In expression studies, some mutations abrogated TBC1D24 mRNA stability. We also detected Tbc1d24 expression in mouse phalangeal chondrocytes and calvaria, which suggests a role of TBC1D24 in skeletogenesis. INTERPRETATION: Our findings suggest that mutations in TBC1D24 seem to be an important cause of DOORS syndrome and can cause diverse phenotypes. Thus, individuals with DOORS syndrome without deafness and seizures but with the other features should still be screened for TBC1D24 mutations. More information is needed to understand the cellular roles of TBC1D24 and identify the genes responsible for DOORS phenotypes in individuals who do not have a mutation in TBC1D24. FUNDING: US National Institutes of Health, the CIHR (Canada), the NIHR (UK), the Wellcome Trust, the Henry Smith Charity, and Action Medical Research.


Assuntos
Proteínas de Transporte/genética , Anormalidades Craniofaciais/genética , Exoma/genética , Deformidades Congênitas da Mão/genética , Perda Auditiva Neurossensorial/genética , Deficiência Intelectual/genética , Internacionalidade , Unhas Malformadas/genética , Fenótipo , Análise de Sequência de DNA/métodos , Adolescente , Proteínas de Transporte/química , Criança , Pré-Escolar , Anormalidades Craniofaciais/diagnóstico , Feminino , Proteínas Ativadoras de GTPase , Deformidades Congênitas da Mão/diagnóstico , Perda Auditiva Neurossensorial/diagnóstico , Humanos , Lactente , Deficiência Intelectual/diagnóstico , Masculino , Proteínas de Membrana , Unhas Malformadas/diagnóstico , Proteínas do Tecido Nervoso , Adulto Jovem
20.
PLoS One ; 7(4): e31327, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22558067

RESUMO

Vesico-ureteral reflux (VUR) is the retrograde passage of urine from the bladder to the urinary tract and causes 8.5% of end-stage renal disease in children. It is a complex genetic developmental disorder, in which ectopic embryonal ureteric budding is implicated in the pathogenesis. VUR is part of the spectrum of Congenital Anomalies of the Kidney and Urinary Tract (CAKUT). We performed an extensive association study for primary VUR using a two-stage, case-control design, investigating 44 candidate genes in the ureteric budding pathway in 409 Dutch VUR patients. The 44 genes were selected from the literature and a set of 567 single nucleotide polymorphisms (SNPs) capturing their genetic variation was genotyped in 207 cases and 554 controls. The 14 SNPs with p<0.005 were included in a follow-up study in 202 cases and 892 controls. Of the total cohort, ~50% showed a clear-cut primary VUR phenotype and ~25% had both a duplex collecting system and VUR. We also looked for association in these two extreme phenotype groups. None of the SNPs reached a significant p-value. Common genetic variants in four genes (GREM1, EYA1, ROBO2 and UPK3A) show a trend towards association with the development of primary VUR (GREM1, EYA1, ROBO2) or duplex collecting system (EYA1 and UPK3A). SNPs in three genes (TGFB1, GNB3 and VEGFA) have been shown to be associated with VUR in other populations. Only the result of rs1800469 in TGFB1 hinted at association in our study. This is the first extensive study of common variants in the genes of the ureteric budding pathway and the genetic susceptibility to primary VUR.


Assuntos
Variação Genética , Morfogênese/genética , Ureter/embriologia , Refluxo Vesicoureteral/genética , Estudos de Casos e Controles , Estudos de Associação Genética , Genótipo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Desequilíbrio de Ligação , Países Baixos , Proteínas Nucleares/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas Tirosina Fosfatases/genética , Receptores Imunológicos/genética , Fator de Crescimento Transformador beta1/genética , Uroplaquina III/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA