RESUMO
Nanoporous silica gels feature extremely large specific surface areas and high porosities and are ideal candidates for adsorption-related processes, although they are commonly rather fragile. To overcome this obstacle, we developed a novel, completely solvent-free process to prepare mechanically robust CNF-reinforced silica nanocomposites via the incorporation of methylcellulose and starch. Significantly, the addition of starch was very promising and substantially increased the compressive strength while preserving the specific surface area of the gels. Moreover, different silanes were added to the sol/gel process to introduce in situ functionality to the CNF/silica hydrogels. Thereby, CNF/silica hydrogels bearing carboxyl groups and thiol groups were produced and tested as adsorber materials for heavy metals and dyes. The developed solvent-free sol/gel process yielded shapable 3D CNF/silica hydrogels with high mechanical strength; moreover, the introduction of chemical functionalities further widens the application scope of such materials.
RESUMO
Wood in service requires protection from excessive moisture. Herein, we demonstrate that efficient surface hydrophobization can be provided with small amounts of biobased oils, benefitting from the hierarchical roughness inherent to wood surfaces. The developed technique involves coating spruce wood with surfactant-free emulsions based on tung oil, linseed oil, or a linseed oil-based long oil alkyd resin. The ζ-potential of the emulsions was determined by electrophoretic mobility measurements. X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and spectrophotometry were used to study coated surfaces. XPS measurements confirmed the presence of the tung oil coatings. Tung oil emulsions were effective at concentration levels as low as 0.04 wt % oil content, roughly equivalent to 0.04 g m-2 and led to static water contact angles reaching up to >130°. SEM imaging and AFM measurements provide evidence that the micro- and nanostructures inherent to wood enhance the hydrophobization effect of the obtained coatings. A further benefit of the method lies in only minimal effects of the coating on the surface color and gloss. Thus, the mass-efficient process following several of the principles of green engineering led to improved water repellency while not affecting the visual appearance of the coated wood.
RESUMO
Thermosetting polymers are used in building materials, for example adhesives in fastening systems. They harden in environmental conditions with a daily temperature depending on the season and location. This curing process takes hours or even days effected by the relatively low ambient temperature necessary for a fast and complete curing. As material properties depend on the degree of cure, its accurate estimation is of paramount interest and the main objective in this work. Thus, we develop an approach for modeling the curing process for epoxy based thermosetting polymers. Specifically, we perform experiments and demonstrate an inverse analysis for determining parameters in the curing model. By using calorimetry measurements and implementing an inverse analysis algorithm by using open-source packages, we obtain 10 material parameters describing the curing process. We present the methodology for two commercial, epoxy based products, where a statistical analysis provides independence of material parameters leading to the conclusion that the material equation is adequately describing the material response.
RESUMO
Application of low-cost carbon black from lignin highly depends on the materials properties, which might by determined by raw material and processing conditions. Four different technical lignins were subjected to thermostabilization followed by stepwise heat treatment up to a temperature of 2000 °C in order to obtain micro-sized carbon particles. The development of the pore structure, graphitization and inner surfaces were investigated by X-ray scattering complemented by scanning electron microscopy and FTIR spectroscopy. Lignosulfonate-based carbons exhibit a complex pore structure with nanopores and mesopores that evolve by heat treatment. Organosolv, kraft and soda lignin-based samples exhibit distinct pores growing steadily with heat treatment temperature. All carbons exhibit increasing pore size of about 0.5-2 nm and increasing inner surface, with a strong increase between 1200 °C and 1600 °C. The chemistry and bonding nature shifts from basic organic material towards pure graphite. The crystallite size was found to increase with the increasing degree of graphitization. Heat treatment of just 1600 °C might be sufficient for many applications, allowing to reduce production energy while maintaining materials properties.
RESUMO
Partial delignification and densification provide a pathway to significant improvement in the mechanical performance of wood. In order to elucidate potential effects of this treatment on the mechanical anisotropy of wood, partially delignified and densified spruce wood veneers were characterized at varying degrees of off-axis alignment. While the tensile strength and the modulus of elasticity (MOE) were clearly improved in parallel to the axis of wood fibers, this improvement quickly leveled off at misalignment angles ≥30°. For transverse tensile strength, the performance of alkaline-treated and densified wood was even inferior to that of untreated wood. Microscopic examination revealed the presence of microscopic cracks in treated wood, which are assumed to be responsible for this observation. It is concluded that impaired transverse tensile properties are a weakness of partially delignified and densified wood and should be considered when a potential usage in load-bearing applications is intended.
RESUMO
Wood and natural fibers exhibit an advantageous combination of good mechanics at comparably low density. Nevertheless, comparing absolute strength and stiffness, wood is clearly inferior to materials such as metals and engineered composites. Since there is a strong correlation between wood density and wood mechanical performance, densification by transversal compression suggests itself as a route towards improved mechanics. Partially delignified densified spruce veneers with excellent tensile properties were produced by means of an alkaline (AL) and an organosolv (OS) approach. Plywood specimens were manufactured using treated veneers glued with a phenol-resorcinol-formaldehyde adhesive and were compared with plywood samples made of native spruce veneers (Ref) and spruce veneer densified after plasticization by water impregnation (H2O). Roughly, the bending strength and the modulus of elasticity of plywood from partially delignified densified wood were improved by a factor of 2.4 and 3.5, respectively. Interlaminar shear strength did not match this improvement after partial delignification. Together with excessive thickness swelling, this might be a drawback of partially delignified densified wood in need for further research.
RESUMO
Among bio-based reinforcement additives for paper existing on the market, microfibrillated cellulose (MFC) turned out to be a promising material, showing outstanding potential in composites science. Its relevance in papermaking as a new family of paper components was suggested more recently. There remains a number of constraints limiting the promotion of their use in papermaking, mostly related to their high cost and effect on dewatering resistance. Also, contrasting results reported in the literature suggest that the effect of fibrillation rate and quantity of such cellulosic additives in a furnish on the technological paper properties needs further research. The purpose of this study is to produce and characterize different MFC-like fine fibrous materials of varying particle size and degree of fibrillation from the same batch of pulp through mechanical treatment or fractionation. The effect of the thus obtained fine fibrous materials on paper properties is evaluated with respect to their concentration within a fiber furnish. We compared: (i) a mixture of primary and secondary fines isolated from the pulp by means of a purpose-built laboratory pressure screen; (ii) MFC-like fine fibrous materials of increasingly fibrillar character obtained by refining and subsequent steps of high-pressure homogenization. The morphology of the different materials was first characterized using flow cell based and microscopic techniques. The thus obtained materials were then applied in handsheet forming in blends of different proportions to evaluate their influence on paper properties. The results of these experiments indicate that all these products lead to a substantial decrease in air permeability and to improved mechanical properties already at low concentration, independent of the type and morphological character of the added fine cellulosic material. At higher addition rates, only highly fibrillated materials allowed a further considerable increase in tensile and z-strength. These observations should help to allow a more targeted application of this new generation of materials in papermaking, depending on the desired application.
RESUMO
The prevention of excessive water uptake in wood in order to avert discoloration, swelling and decay is a major challenge for wood-based applications. We developed a facile surface treatment to protect wood from liquid water uptake that does not require harsh process conditions or toxic solvents. Water-based and surfactant-free dispersions of sub-micron alkyl ketene dimer wax particles were prepared and sprayed onto wood substrates. After the evaporation of water, the wax particles self-assembled into distinctive platelet structures. Depending on the specific conditions of application, water contact angles as high as 166° were measured on treated wood surfaces. The implementation of sub-micro structures clearly reduced surface gloss but transparency and color remained largely unaffected. The method is comparably cost-effective and scalable, overcoming dimensional limitations crucial for many applications of wood.
RESUMO
The aim of this research was to investigate the effect of functionalized cellulose nanocrystals (CNC) on the performance of urea-formaldehyde (UF) adhesive for the production of medium density fiberboard (MDF). Surface modification of CNC was performed using 3-Aminopropyltriethoxysilane (APTES). Some physical and thermal properties of reinforced and neat UF as well as formaldehyde emission and some mechanical (modulus of rupture (MOR), modulus of elasticity (MOE) and internal bond strength (IB)) and physical properties (thickness swelling (TS) and water absorption (WA)) of the resulting MDF panels were determined. Based on the results, upon incorporation of modified CNC to the system, solid content, density, viscosity and free formaldehyde of UF adhesives decreased while gel time increased. Depending on addition of the modified CNC loading in the panels, the formaldehyde emission values varied from 11% to 17% lower than the panels made from neat UF. In comparison to the control samples, panels made with UF containing 2% modified CNC had 29.3% and 38.2% higher MOR and MOE respectively.
RESUMO
Carbon particles were produced from kraft lignin through carbonization of perfectly spherical, sub-micron beads obtained by aerosol flow. The structure of the resulting carbon particles was elucidated and compared to that derived from commercially available technical lignin powder, which is undefined in geometry. In addition to the smaller diameters of the lignin beads (<1 µm) compared to those of the lignin powder (100 µm), the former displayed a slightly higher structural order as revealed by X-ray diffraction and Raman spectroscopy. With regard to potential application in composite structures, the sub-micron carbon beads were clearly advantageous as a filler of cellulose nanopapers, which displayed better mechanical performance but with limited electrical conductivity. Compression sensing was achieved for this nanocomposite system.
RESUMO
The effective and straight-forward modification of nanostructured celluloses under aqueous conditions or as "never-dried" materials is challenging. We report a silanization protocol in water using catalytic amounts of hydrogen chloride and then sodium hydroxide in a two-step protocol. The acidic step hydrolyzes the alkoxysilane to obtain water-soluble silanols and the subsequent addition of catalytic amounts of NaOH induces a covalent reaction between cellulose surficial hydroxyl groups and the respective silanols. The developed protocol enables the incorporation of vinyl, thiol, and azido groups onto cellulose fibers and cellulose nanofibrils. In contrast to conventional methods, no curing or solvent-exchange is necessary, thereby the functionalized celluloses remain never-dried, and no agglomeration or hornification occurs in the process. The successful modification was proven by solid state NMR, ATR-IR, and EDX spectroscopy. In addition, the covalent nature of this bonding was shown by gel permeation chromatography of polyethylene glycol grafted nanofibrils. By varying the amount of silane agents or the reaction time, the silane loading could be tuned up to an amount of 1.2 mmol/g. Multifunctional materials were obtained either by prior carboxymethylation and subsequent silanization; or by simultaneously incorporating both vinyl and azido groups. The protocol reported here is an easy, general, and straight-forward avenue for introduction of anchor groups onto the surface of never-dried celluloses, ready for click chemistry post-modification, to obtain multifunctional cellulose substrates for high-value applications.
Assuntos
Celulose/química , Ácido Clorídrico/química , Silanos/síntese química , Hidróxido de Sódio/química , Catálise , Química Click , Nanofibras/química , Silanos/química , Compostos de Sulfidrila/síntese química , Compostos de Sulfidrila/química , Propriedades de Superfície , Compostos de Vinila/síntese química , Compostos de Vinila/química , Água/químicaRESUMO
The common method to impregnate wood with polyethylene glycol (PEG) is to store the samples for several weeks in aqueous PEG-solution, allowing for diffusion of PEG into the wood. As this method is poorly suited for industrial application, an alternative approach based on vacuum-pressure treatment is evaluated in the present study. Using European oak wood and three variants of PEG, including silane-functionalized PEG, impregnation experiments at different PEG concentrations were performed. Significant uptake of PEG resulted in clearly altered wood-water relations and improved dimensional stability of oak wood. These results are discussed in terms of stability in humid and aqueous environments, and in terms of effects of the anatomy of oak wood on differences in dimensional stabilization observed along the radial and tangential anatomical directions, respectively. While both of the PEG variants perform better with an anti-shrinkage efficiency of up to 80%, the PEG-silane variant performs less effectively in this respect; however PEG-silane is clearly predominant in case of water extraction.
RESUMO
Surface functionalization of cellulose nanocrystals (CNCs) is valuable option to tailor properties as well as increase opportunities for their application. In this study, the surface of CNCs was functionalized with 3-aminopropyltriethoxysilane (APTES), without using hazardous solvents and by a direct, simple and straightforward method. APTES was firstly hydrolyzed in water and then adsorbed onto CNC through hydrogen bonds, finally the chain hydrocarbon was covalently linked to the surface of CNC through SiOC bonds which formed via the condensation reaction between hydroxyl and silanol groups. The chemical modification of the CNCs surface was confirmed by ATR-IR and NMR spectroscopy. Experiments conducted by AFM and XRD showed no significant change in the CNC dimensions and crystalline structure as a result of the modification. The EDX and XPS results confirmed the exsistence of APTES onto the CNCs. Silylated CNC exhibited good thermal stability and a greater amount of residual char was formed at 500 °C compared to non-chemically modified CNC. Thus, The silylation of CNCs may offer applications in composite manufacturing, where these nanoparticles have limited dispersibility in hydrophobic polymer matrices, and as nano-adsorbers due to the presence of amino groups attached on the surface.
Assuntos
Celulose/química , Nanopartículas/química , Propilaminas/química , Silanos/química , Solventes/química , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Nanopartículas/ultraestrutura , Polímeros/química , Propriedades de Superfície , Água/químicaRESUMO
Microfibrillated cellulose (MFC) is a fascinating material with an obvious potential for composite reinforcement due to its excellent mechanics together with high specific surface area. However, in order to use this potential, commercially viable solutions to important technological challenges have to be found. Notably, the distinct hydrophilicity of MFC prevents efficient drying without loss in specific surface area, necessitating storage and processing in wet condition. This greatly hinders compounding with important technical polymers immiscible with water. Differently from cellulose, the chemistry of the major wood polymers lignin and hemicellulose is much more diverse in terms of functional groups. Specifically, the aromatic moieties present in lignin and acetyl groups in hemicellulose provide distinctly less polar surface-chemical functionality compared to hydroxyl groups which dominate the surface-chemical character of cellulose. It is shown that considerable advantages in the production of MFC-filled poly(lactic acid) filaments for three-dimensional printing can be obtained through the use of MFC containing residual lignin and hemicellulose due to their advantageous surface-chemical characteristics. Specifically, considerably reduced agglomerations of MFC in the filaments in combination with improved printability and improved toughness of printed objects are achieved.This article is part of a discussion meeting issue 'New horizons for cellulose nanotechnology'.
RESUMO
Due to their bio-based character, oil-based coatings become more and more prevalent in wood surface finishing. These coatings impart appealing optical and haptic properties to the wood surface, but lack sufficient protection against water and mechanical influences. The present study reports a simple green route to improve the performance of linseed oil coating by the addition of nanofibrillated cellulose (NFC). In order to achieve surface chemical compatibility with linseed oil, NFC was chemically modified with acetic anhydride and (2-dodecen-1-yl)succinic anhydride, respectively, using propylene carbonate as a solvent. NFC/linseed oil formulations were prepared and applied to wood substrates. The wear resistance of oil-coated wood surfaces was assessed by a newly developed test combining abrasive loading with subsequent contact angle measurement. As revealed by infrared and nuclear magnetic resonance (NMR) spectroscopy, as well as X-ray diffraction (XRD), NFC has been successfully modified without significantly affecting the structure of cellulose. In abrasion tests, all NFC-modified oil coatings performed better than the original oil. Interestingly, NFC only suspended in propylene carbonate, i.e., without chemical modification, had the strongest improvement effect on the coating's wear resistance. This was primarily attributed to the loose network structure of this NFC variant which effectively prevents the oil from penetration into the wood surface, thus forming a protective NFC/oil composite layer on the wood surface.
RESUMO
The self-adhesive potential of nanocellulose from aqueous cellulosic suspensions is of interest with regard to a potential replacement of synthetic adhesives. In order to evaluate the performance of microfibrillated cellulose from different (ligno-)cellulosic raw materials for this purpose, softwood and hardwood powder were fibrillated and compared to sugar beet pulp as a representative non-wood cellulose resource, and conventional microfibrillated cellulose produced from bleached pulp. An alkali pre-treatment of woody and sugar beet raw materials enhanced the degree of fibrillation achieved, same as TEMPO-mediated oxidation of microfibrillated cellulose. Nanopapers produced from fibrillated material showed highly variable density and mechanical performance, demonstrating that properties may be tuned by the choice of raw material. While nanopaper strength was highest for TEMPO-oxidated microfibrillated cellulose, fibrillated untreated sugar beet pulp showed the best adhesive performance. Different microscopic methods (AFM, SEM, light microscopy) examined the interface between wood and fibrillated material, showing particular distinctions to commercial adhesives. It is proposed that fibrillated material suspensions, which achieve bond strength up to 60% of commercial urea-formaldehyde adhesive, may provide a viable solution to bio-based adhesives in certain applications where wet-strength is not an issue.
RESUMO
A facile approach to obtaining cellulose nanofiber-reinforced polystyrene with greatly improved mechanical performance compared to unreinforced polystyrene is presented. Cellulose nanofibers were obtained by mechanical fibrillation of partially delignified wood (MFLC) and compared to nanofibers obtained from bleached pulp. Residual hemicellulose and lignin imparted amphiphilic surface chemical character to MFLC, which enabled the stabilization of emulsions of styrene in water. Upon suspension polymerization of styrene from the emulsion, polystyrene microspheres coated in MFLC were obtained. When processed into polymer sheets by hot-pressing, improved bending strength and superior impact toughness was observed for the polystyrene-MFLC composite compared to the un-reinforced polystyrene.
RESUMO
A new route towards embedding fibrillated cellulose in a non-polar thermoset matrix without any use of organic solvent or chemical surface modification is presented. It is shown that microfibrillated lignocellulose made from cellulose with high residual lignin content is capable of stabilising an emulsion of unsaturated polyester resin in water due to its amphiphilic surface-chemical character. Upon polymerisation of the resin, thermoset microspheres embedded in a microfibrillated cellulose network are formed. The porous network structure persists after conventional drying in an oven, yielding a mechanically stable porous material. In an application experiment, the porous material was milled into a fine powder and added to the polyester matrix of a glass fibre-reinforced composite. This resulted in a significant improvement in fracture toughness of the composite, whereas a reduction of bending strength and stiffness was observed in parallel.
RESUMO
Carbon microparticles were produced from organosolv lignin at 2000 °C under argon atmosphere following oxidative thermostabilisation at 250 °C. Scanning electron microscopy, X-ray diffraction, small-angle X-ray scattering, and electro-conductivity measurements revealed that the obtained particles were electrically conductive and were composed of large graphitic domains. Poly(lactic acid) filled with various amounts of lignin-derived microparticles showed higher tensile stiffness increasing with particle load, whereas strength and extensibility decreased. Electric conductivity was measured at filler loads equal to and greater than 25% w/w.