Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 13(33): 14221-14227, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34477704

RESUMO

The incorporation of plasmonic metal nanoparticles (NPs) into the multilayered architecture of perovskite solar cells (PSCs) has been a recurrent strategy to enhance the performance of photovoltaic devices from the early development of this technology. However, the specific photophysical interactions between the metal NPs and the hybrid halide perovskites are still not completely understood. Herein, we investigate the influence of Au NPs on the photoluminescence (PL) signal of a thin layer of the CH3NH3PbI3 hybrid perovskite. Core-shell Au@SiO2 NPs with a tunable thickness of the SiO2 shell were used to adjust the interaction distance between the plasmonic NPs and the perovskite layer. Complete quenching of the PL signal in the presence of the Au NPs is measured together with the gradual recovery of the PL intensity at a thicker thickness of the SiO2 shell. A nanometal surface energy transfer (NSET) model is employed to reasonably fit the experimental quenching efficiency. Thus, the energy transfer deactivation is revealed as a detrimental process occurring in the PSCs since it funnels the photon energy into the non-active excited state of the Au NPs. This work indicates that tuning the distance between the plasmonic NPs and the perovskite materials by a silica shell may be a simple and straightforward strategy for further improving the efficiency of PSCs.

2.
J Colloid Interface Sci ; 537: 694-703, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30481730

RESUMO

Monolayers of a cytosine-based nucleolipid (1,2-dipalmitoyl-sn-glycero-3-(cytidine diphosphate) (ammonium salt), CDP-DG) at basic subphase have been prepared at the air-water interface both in absence and presence of guanine. The formation of the complementary base pairing is demonstrated by combining surface experimental techniques, i.e., surface pressure (π)-area (A), Brewster angle microscopy (BAM), infrared spectroscopy (PM-IRRAS) and computer simulations. A folding of the cytosine-based nucleolipid molecules forming monolayer at the air-water interface occurs during the guanine recognition as absorbate host and is kept during several compression-expansion processes under set experimental conditions. The specificity between nitrogenous bases has been also registered. Finally, mixed monolayers of CDP-DG and a phospholipid (1,2-dimyristoyl-sn-glycero-3-phosphate (sodium salt), DMPA) has been studied and a molecular segregation of the DMPA molecules has been inferred by the additivity rule.


Assuntos
Ar , Citosina/química , Guanina/química , Lipídeos/química , Água/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Tamanho da Partícula , Pressão , Propriedades de Superfície
3.
J Am Chem Soc ; 139(3): 1120-1128, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28036174

RESUMO

The ability to respond toward mechanical stimuli is a fundamental property of biological organisms at both the macroscopic and cellular levels, yet it has been considerably less observed in artificial supramolecular and colloidal homologues. An archetypal example in this regard is cellular mechanosensation, a process by which mechanical forces applied on the cell membrane are converted into biochemical or electrical signals through nanometer-scale changes in molecular conformations. In this article, we report an artificial gold nanoparticle (Au NP)-discrete π-conjugated molecule hybrid system that mimics the mechanical behavior of biological membranes and is able to self-assemble into colloidal gold nanoclusters or membranes in a controlled and reversible fashion by changing the concentration or the mechanical force (pressure) applied. This has been achieved by rational design of a small π-conjugated thiolated molecule that controls, to a great extent, the hierarchy levels involved in Au NP clustering by enabling reversible, cooperative non-covalent (π-π, solvophobic, and hydrogen bonding) interactions. In addition, the Au NP membranes have the ability to entrap and release aromatic guest molecules reversibly (Kb = 5.0 × 105 M-1) for several cycles when subjected to compression-expansion experiments, in close analogy to the behavior of cellular mechanosensitive channels. Not only does our hybrid system represent the first example of a reversible colloidal membrane, but it also can be controlled by a dynamic mechanical stimulus using a new supramolecular surface-pressure-controlled strategy. This approach holds great potential for the development of multiple colloidal assemblies within different research fields.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Coloides/química , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
4.
Chemphyschem ; 11(10): 2241-7, 2010 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-20544777

RESUMO

Adsorption of methylene blue (MB) onto a dimyristoylphosphatidic acid (DMPA) Langmuir air/water monolayer is studied by molecular dynamics (MD) simulations, UV reflection spectroscopy and surface potential measurements. The free-energy profile associated with MB transfer from water to the lipid monolayer shows two minima of -66 and -60 kJ mol(-1) for its solid and gas phase, respectively, corresponding to a spontaneous thermodynamic process. From the position of the free-energy minima, it is possible to predict the precise location of MB in the interior of the DMPA monolayer. Thus, MB is accommodated in the phosphoryl or carbonyl region of the DMPA Langmuir air/water interface, depending on the isomorphic state (solid or gas phase, respectively). Reorientation of MB, measured from the bulk solution to the interior of the lipid monolayer, passes from a random orientation in bulk solution to an orientation parallel to the surface of the lipid monolayer when MB is absorbed.


Assuntos
Glicerofosfolipídeos/química , Azul de Metileno/química , Adsorção , Ar , Simulação de Dinâmica Molecular , Espectrofotometria Ultravioleta , Água/química
5.
Chemphyschem ; 9(17): 2538-43, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19012310

RESUMO

Studying the effect of alkali and alkaline-earth metal cations on Langmuir monolayers is relevant from biophysical and nanotechnological points of view. In this work, the effect of Na(+) and Ca(2+) on a model of an anionic Langmuir lipid monolayer of dimyristoylphosphatidate (DMPA(-)) is studied by molecular dynamics simulations. The influence of the type of cation on lipid structure, lipid-lipid interactions, and lipid ordering is analyzed in terms of electrostatic interactions. It is found that for a lipid monolayer in its solid phase, the effect of the cations on the properties of the lipid monolayer can be neglected. The influence of the cations is enhanced for the lipid monolayer in its gas phase, where sodium ions show a high degree of dehydration compared with calcium ions. This loss of hydration shell is partly compensated by the formation of lipid-ion-lipid bridges. This difference is ascribed to the higher charge-to-radius ratio q/r for Ca(2+), which makes ion dehydration less favorable compared to Na(+). Owing to the different dehydration behavior of sodium and calcium ions, diminished lipid-lipid coordination, lipid-ion coordination, and lipid ordering are observed for Ca(2+) compared to Na(+). Furthermore, for both gas and solid phases of the lipid Langmuir monolayers, lipid conformation and ion dehydration across the lipid/water interface are studied.


Assuntos
Cálcio/química , Simulação por Computador , Lipídeos/química , Sódio/química , Íons , Modelos Químicos , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA