Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38014068

RESUMO

Genetic polymorphisms in nuclear respiratory factor-1 ( NRF1 ), a key transcriptional regulator of nuclear-encoded mitochondrial proteins, have been linked to diabetes. Homozygous deletion of Nrf1 is embryonic lethal in mice. Our goal was to generate mice with ß-cell-specific reduction in NRF1 function to investigate the relationship between NRF1 and diabetes. We report the generation of mice expressing a dominant-negative allele of Nrf1 (DNNRF1) in pancreatic ß-cells. Heterozygous transgenic mice had high fed blood glucose levels detected at 3 wks of age, which persisted through adulthood. Plasma insulin levels in DNNRF1 transgenic mice were reduced, while insulin sensitivity remained intact in young animals. Islet size was reduced with increased numbers of apoptotic cells, and insulin content in islets by immunohistochemistry was low. Glucose-stimulated insulin secretion in isolated islets was reduced in DNNRF1-mice, but partially rescued by KCl, suggesting that decreased mitochondrial function contributed to the insulin secretory defect. Electron micrographs demonstrated abnormal mitochondrial morphology in ß- cells. Expression of NRF1 target genes Tfam , T@1m and T@2m , and islet cytochrome c oxidase and succinate dehydrogenase activities were reduced in DNNRF1-mice. Rescue of mitochondrial function with low level activation of transgenic c-Myc in ß-cells was sufficient to restore ß-cell mass and prevent diabetes. This study demonstrates that reduced NRF1 function can lead to loss of ß-cell function and establishes a model to study the interplay between regulators of bi- genomic gene transcription in diabetes.

2.
Sci Rep ; 13(1): 16622, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789055

RESUMO

Inuit of Nunavik are coping with living conditions that can influence respiratory health. Our objective was to investigate associations between respiratory health in Inuit communities and their airway microbiome. Oropharyngeal samples were collected during the Qanuilirpitaa? 2017 Inuit Health Survey and subjected to metagenomic analyses. Participants were assigned to a bronchial obstruction group or a control group based on their clinical history and their pulmonary function, as monitored by spirometry. The Inuit microbiota composition was found to be distinct from other studied populations. Within the Inuit microbiota, differences in diversity measures tend to distinguish the two groups. Bacterial taxa found to be more abundant in the control group included candidate probiotic strains, while those enriched in the bronchial obstruction group included opportunistic pathogens. Crossing taxa affiliation method and machine learning consolidated our finding of distinct core microbiomes between the two groups. More microbial metabolic pathways were enriched in the control participants and these were often involved in vitamin and anti-inflammatory metabolism, while a link could be established between the enriched pathways in the disease group and inflammation. Overall, our results suggest a link between microbial abundance, interactions and metabolic activities and respiratory health in the Inuit population.


Assuntos
Broncopatias , Disbiose , Microbiota , Orofaringe , Humanos , Broncopatias/epidemiologia , Disbiose/epidemiologia , Inuíte , Pulmão , Orofaringe/microbiologia
3.
Antimicrob Agents Chemother ; 67(8): e0039523, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37409958

RESUMO

Two strains of Streptococcus pneumoniae, one expressing the methyltransferase Erm(B) and the other negative for erm(B), were selected for solithromycin resistance in vitro either with direct drug selection or with chemical mutagenesis followed by drug selection. We obtained a series of mutants that we characterized by next-generation sequencing. We found mutations in various ribosomal proteins (L3, L4, L22, L32, and S4) and in the 23S rRNA. We also found mutations in subunits of the phosphate transporter, in the DEAD box helicase CshB, and in the erm(B)L leader peptide. All mutations were shown to decrease solithromycin susceptibility when transformed into sensitive isolates. Some of the genes derived from our in vitro screens were found to be mutated also in clinical isolates with decreased susceptibility to solithromycin. While many mutations were in coding sequences, some were found in regulatory regions. These included novel phenotypic mutations in the intergenic regions of the macrolide resistance locus mef(E)/mel and in the vicinity of the ribosome binding site of erm(B). Our screens highlighted that macrolide-resistant S. pneumoniae can easily acquire resistance to solithromycin, and they revealed many new phenotypic mutations.


Assuntos
Antibacterianos , Macrolídeos , Macrolídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Streptococcus pneumoniae , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Mutação
5.
ACS Infect Dis ; 7(8): 2472-2482, 2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34282886

RESUMO

Chemotherapy against the neglected tropical disease visceral leishmaniasis (VL) is suboptimal with only four licensed drugs. Amphotericin B (AmB), despite its toxicity, remained a second line drug for a long time. However, the demonstration that liposomal AmB is highly effective against VL propelled it, despite its cost, to a first line drug in many countries. While several ongoing efforts are aiming at finding cheaper and stable AmB-formulations, an alternative strategy is the development of less-toxic AmB derivatives. We show here that two less-toxic AmB derivatives with the carboxylate at position 16 of AmB derivatized to a methyl urea (AmB-MU) or amino urea (AmB-AU) are active in vitro against Leishmania donovani, both as free-living parasites as well as their intracellular form. Both less-toxic derivatives, similarly to AmB, target the ergosterol pathway of L. donovani. While the AmB-AU derivative showed female-specific liver toxicity in vivo, the AmB-MU derivative was well-tolerated and more effective than AmB against experimental VL. These studies are an important step for improving AmB-based therapy against a prevalent parasitic disease.


Assuntos
Antiprotozoários , Leishmania donovani , Leishmaniose Visceral , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Antiprotozoários/farmacologia , Composição de Medicamentos , Feminino , Humanos , Leishmaniose Visceral/tratamento farmacológico
6.
Microb Genom ; 6(11)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33074087

RESUMO

We report on the combination of chemical mutagenesis, azithromycin selection and next-generation sequencing (Mut-Seq) for the identification of small nucleotide variants that decrease the susceptibility of Streptococcus pneumoniae to the macrolide antibiotic azithromycin. Mutations in the 23S ribosomal RNA or in ribosomal proteins can confer resistance to macrolides and these were detected by Mut-Seq. By concentrating on recurrent variants, we could associate mutations in genes implicated in the metabolism of glutamine with decreased azithromycin susceptibility among S. pneumoniae mutants. Glutamine synthetase catalyses the transformation of glutamate and ammonium into glutamine and its chemical inhibition is shown to sensitize S. pneumoniae to antibiotics. A mutation affecting the ribosomal-binding site of a putative ribonuclease J2 is also shown to confer low-level resistance. Mut-Seq has the potential to reveal chromosomal changes enabling high resistance as well as novel events conferring more subtle phenotypes.


Assuntos
Antibacterianos/farmacologia , Azitromicina/farmacologia , Farmacorresistência Bacteriana/genética , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/genética , Endorribonucleases/metabolismo , Glutamato-Amônia Ligase/antagonistas & inibidores , Sequenciamento de Nucleotídeos em Larga Escala , Testes de Sensibilidade Microbiana , Mutagênese/genética , Inibidores da Síntese de Proteínas/farmacologia , RNA Ribossômico 23S/genética
7.
Nat Commun ; 10(1): 5627, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31819054

RESUMO

Current genome-wide screens allow system-wide study of drug resistance but detecting small nucleotide variants (SNVs) is challenging. Here, we use chemical mutagenesis, drug selection and next generation sequencing to characterize miltefosine and paromomycin resistant clones of the parasite Leishmania. We highlight several genes involved in drug resistance by sequencing the genomes of 41 resistant clones and by concentrating on recurrent SNVs. We associate genes linked to lipid metabolism or to ribosome/translation functions with miltefosine or paromomycin resistance, respectively. We prove by allelic replacement and CRISPR-Cas9 gene-editing that the essential protein kinase CDPK1 is crucial for paromomycin resistance. We have linked CDPK1 in translation by functional interactome analysis, and provide evidence that CDPK1 contributes to antimonial resistance in the parasite. This screen is powerful in exploring networks of drug resistance in an organism with diploid to mosaic aneuploid genome, hence widening the scope of its applicability.


Assuntos
Resistência a Medicamentos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Leishmania/genética , Mutagênese , Mutação/genética , Paromomicina/farmacologia , Fosforilcolina/análogos & derivados , Fosforilação/efeitos dos fármacos , Fosforilcolina/farmacologia
8.
mSystems ; 4(6)2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31744905

RESUMO

Carbapenem-resistant Gram-negative bacteria are considered a major threat to global health. Imipenem (IMP) is used as a last line of treatment against these pathogens, but its efficacy is diminished by the emergence of resistance. We applied a whole-genome screen in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa isolates that were submitted to chemical mutagenesis, selected for IMP resistance, and characterized by next-generation sequencing. A comparative analysis of IMP-resistant clones showed that most of the highly mutated genes shared by the three species encoded proteins involved in transcription or signal transduction. Of these, the rpoD gene was one of the most prevalent and an E. coli strain disrupted for rpoD displayed a 4-fold increase in resistance to IMP. E. coli and K. pneumoniae also specifically shared several mutated genes, most involved in membrane/cell envelope biogenesis, and the contribution in IMP susceptibility was experimentally proven for amidases, transferases, and transglycosidases. P. aeruginosa differed from the two Enterobacteriaceae isolates with two different resistance mechanisms, with one involving mutations in the oprD porin or, alternatively, in two-component systems. Our chemogenomic screen performed with the three species has highlighted shared and species-specific responses to IMP.IMPORTANCE Gram-negative carbapenem-resistant bacteria are a major threat to global health. The use of genome-wide screening approaches to probe for genes or mutations enabling resistance can lead to identification of molecular markers for diagnostics applications. We describe an approach called Mut-Seq that couples chemical mutagenesis and next-generation sequencing for studying resistance to imipenem in the Gram-negative bacteria Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa The use of this approach highlighted shared and species-specific responses, and the role in resistance of a number of genes involved in membrane biogenesis, transcription, and signal transduction was functionally validated. Interestingly, some of the genes identified were previously considered promising therapeutic targets. Our genome-wide screen has the potential to be extended outside drug resistance studies and expanded to other organisms.

9.
Artigo em Inglês | MEDLINE | ID: mdl-30783004

RESUMO

Two whole-genome screening approaches are described for studying the mode of action and the mechanisms of resistance to trimethoprim (TMP) in the Gram-positive Streptococcus pneumoniae The gain-of-function approach (Int-Seq) relies on a genomic library of DNA fragments integrated into a fucose-inducible cassette. The second approach, leading to both gain- and loss-of-function mutation, is based on chemical mutagenesis coupled to next-generation sequencing (Mut-Seq). Both approaches pointed at the drug target dihydrofolate reductase (DHFR) as a major resistance mechanism to TMP. Resistance was achieved by dhfr overexpression either through the addition of fucose (Int-Seq) or by mutations upstream of the gene (Mut-Seq). Three types of mutations increased expression by disrupting a predicted Rho-independent terminator upstream of dhfr Known and novel DHFR mutations were also detected by Mut-Seq, and these were functionally validated for TMP resistance. The two approaches also suggested that an increase in the metabolic flux from purine synthesis to GTP and then to folate can modulate the susceptibility to TMP. Finally, we provide evidence for a novel role of the ABC transporter PatAB in TMP susceptibility. Our genomic screens highlighted novel aspects on the mode of action and mechanisms of resistance to antibiotics.


Assuntos
Antibacterianos/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Streptococcus pneumoniae/efeitos dos fármacos , Farmacorresistência Bacteriana , Mutação , Streptococcus pneumoniae/genética , Trimetoprima/farmacologia
10.
Microb Genom ; 4(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29319470

RESUMO

In order to expedite the discovery of genes coding for either drug targets or antibiotic resistance, we have developed a functional genomic strategy termed Plas-Seq. This technique involves coupling a multicopy suppressor library to next-generation sequencing. We generated an Escherichia coli plasmid genomic library that was transformed into E. coli. These transformants were selected step by step using 0.25× to 2× minimum inhibitory concentrations for ceftriaxone, gentamicin, levofloxacin, tetracycline or trimethoprim. Plasmids were isolated at each selection step and subjected to Illumina sequencing. By searching for genomic loci whose sequencing coverage increased with antibiotic pressure we were able to detect 48 different genomic loci that were enriched by at least one antibiotic. Fifteen of these loci were studied functionally, and we showed that 13 can decrease the susceptibility of E. coli to antibiotics when overexpressed. These genes coded for drug targets, transcription factors, membrane proteins and resistance factors. The technique of Plas-Seq is expediting the discovery of genes associated with the mode of action or resistance to antibiotics and led to the isolation of a novel gene influencing drug susceptibility. It has the potential for being applied to novel molecules and to other microbial species.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sistemas CRISPR-Cas , Ceftriaxona/farmacologia , Proteínas de Ligação a DNA/genética , Proteínas de Escherichia coli/genética , Técnicas de Silenciamento de Genes , Genes Bacterianos/genética , Gentamicinas/farmacologia , Levofloxacino/farmacologia , Proteínas de Membrana/genética , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Fatores R/genética , Tetraciclina/farmacologia , Fatores de Transcrição/genética , Trimetoprima/farmacologia
11.
Genome Announc ; 5(28)2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28705957

RESUMO

The lytic Streptococcus pneumoniae phage MS1 was isolated from a throat swab of a patient with symptoms of upper respiratory tract infection. The genome of this siphophage has 56,075 bp, 42.3% G+C content, and 77 open reading frames, including queuosine biosynthesis genes. Phage MS1 is related to pneumococcal phage Dp-1.

12.
Future Microbiol ; 12: 205-212, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28262046

RESUMO

AIM: The aim of this study was to evaluate the efficacy of durancin 61A alone or in combination with nisin, pediocin PA-1, reuterin, microcin J25, vancomycin or tetracycline as an inhibitor of resistant clinical pathogens and to shed light on its mode of action. RESULTS: Durancin and reuterin were effective inhibitors of Clostridium difficile, vancomycin-resistant Enterococcus faecium and methicillin-resistant Staphylococcus aureus. The combination of durancin and reuterin was highly synergistic against C. difficile (fractional inhibitory concentration index = 0.2). Durancin/vancomycin combination was synergistic against S. aureus ATCC® 700699 (fractional inhibitory concentration index = 0.3). Conclusion & future perspective: Durancin 61A alone or combined with other bacteriocins or antibiotics may therefore provide a possible therapeutic option for the treatment of infections by these pathogens.


Assuntos
Antibacterianos/farmacologia , Bacteriocinas/farmacologia , Clostridioides difficile/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Bacteriocinas/metabolismo , Clostridioides difficile/fisiologia , Sinergismo Farmacológico , Enterococcus/química , Enterococcus/genética , Enterococcus/isolamento & purificação , Enterococcus/metabolismo , Staphylococcus aureus Resistente à Meticilina/fisiologia , Testes de Sensibilidade Microbiana , Nisina/farmacologia , Tetraciclina/farmacologia , Vancomicina/farmacologia
13.
ISME J ; 10(3): 707-20, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26359913

RESUMO

Microbiome studies have demonstrated the high inter-individual diversity of the gut microbiota. However, how the initial composition of the microbiome affects the impact of antibiotics on microbial communities is relatively unexplored. To specifically address this question, we administered a second-generation cephalosporin, cefprozil, to healthy volunteers. Stool samples gathered before antibiotic exposure, at the end of the treatment and 3 months later were analysed using shotgun metagenomic sequencing. On average, 15 billion nucleotides were sequenced for each sample. We show that standard antibiotic treatment can alter the gut microbiome in a specific, reproducible and predictable manner. The most consistent effect of the antibiotic was the increase of Lachnoclostridium bolteae in 16 out of the 18 cefprozil-exposed participants. Strikingly, we identified a subgroup of participants who were enriched in the opportunistic pathogen Enterobacter cloacae after exposure to the antibiotic, an effect linked to lower initial microbiome diversity and to a Bacteroides enterotype. Although the resistance gene content of participants' microbiomes was altered by the antibiotic, the impact of cefprozil remained specific to individual participants. Resistance genes that were not detectable prior to treatment were observed after a 7-day course of antibiotic administration. Specifically, point mutations in beta-lactamase blaCfxA-6 were enriched after antibiotic treatment in several participants. This suggests that monitoring the initial composition of the microbiome before treatment could assist in the prevention of some of the adverse effects associated with antibiotics or other treatments.


Assuntos
Antibacterianos/administração & dosagem , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Microbioma Gastrointestinal/efeitos dos fármacos , Adulto , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cefalosporinas/administração & dosagem , Fezes/microbiologia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Metagenômica , Adulto Jovem , Cefprozil
14.
BMC Genomics ; 16: 972, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26582495

RESUMO

BACKGROUND: Bacteriophage replication depends on bacterial proteins and inactivation of genes coding for such host factors should interfere with phage infection. To gain further insights into the interactions between S. pneumoniae and its pneumophages, we characterized S. pneumoniae mutants selected for resistance to the virulent phages SOCP or Dp-1. RESULTS: S. pneumoniae R6-SOCP(R) and R6-DP1(R) were highly resistant to the phage used for their selection and no cross-resistance between the two phages was detected. Adsorption of SOCP to R6-SOCP(R) was partly reduced whereas no difference in Dp-1 adsorption was noted on R6-DP1(R). The replication of SOCP was completely inhibited in R6-SOCP(R) while Dp-1 was severely impaired in R6-DP1(R). Genome sequencing identified 8 and 2 genes mutated in R6-SOCP(R) and R6-DP1(R), respectively. Resistance reconstruction in phage-sensitive S. pneumoniae confirmed that mutations in a GntR-type regulator, in a glycerophosphoryl phosphodiesterase and in a Mur ligase were responsible for resistance to SOCP. The three mutations were additive to increase resistance to SOCP. In contrast, resistance to Dp-1 in R6-DP1(R) resulted from mutations in a unique gene coding for a type IV restriction endonuclease. CONCLUSION: The characterization of mutations conferring resistance to pneumophages highlighted that diverse host genes are involved in the replication of phages from different families.


Assuntos
Bacteriófagos/fisiologia , Genômica , Interações Hospedeiro-Patógeno/genética , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/virologia , Adsorção , Mutação , Streptococcus pneumoniae/fisiologia , Replicação Viral
15.
J Antimicrob Chemother ; 70(11): 2973-80, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26183184

RESUMO

OBJECTIVES: Tigecycline is a broad-spectrum antibiotic acting at the level of the 30S ribosomal subunit to inhibit translation. While Streptococcus pneumoniae remains susceptible to tigecycline, resistance is beginning to emerge in some species and mainly involves efflux or mutations in ribosome constituents. We describe here the characterization of S. pneumoniae mutants selected for resistance to tigecycline. METHODS: Molecular determinants of resistance to tigecycline in S. pneumoniae were studied through WGS of two series of mutants made resistant to tigecycline in vitro in a stepwise fashion and by reconstructing tigecycline resistance using DNA transformation. RESULTS: The tigecycline-resistant S. pneumoniae M1TGC-6 and M2TGC-6 mutants were cross-resistant to tetracycline and minocycline. A role in tigecycline resistance could be attributed to 4 of the 12 genes that were mutated in both mutants. Mutations in ribosomal proteins S10 and S3, acquired early and late during selection, respectively, were implicated in resistance in both mutants. Similarly, mutations were detected in the four alleles of the 16S ribosomal RNA at sites involved in tigecycline binding and the number of mutated alleles correlated with the level of resistance. Finally, the gene spr1784 encodes an RsmD-like 16S rRNA methyltransferase for which inactivating mutations selected in the S. pneumoniae tigecycline-resistant mutants were found to decrease susceptibility to tigecycline. CONCLUSIONS: This first report about tigecycline resistance mechanisms in S. pneumoniae revealed that, in contrast to Gram-negative species, for which efflux appears central for tigecycline resistance, resistance in the pneumococcus occurs through mutations related to ribosomes.


Assuntos
Antibacterianos/farmacologia , DNA Ribossômico/genética , Farmacorresistência Bacteriana , Minociclina/análogos & derivados , Mutação , Proteínas Ribossômicas/genética , Streptococcus pneumoniae/efeitos dos fármacos , Análise Mutacional de DNA , Minociclina/farmacologia , Dados de Sequência Molecular , Seleção Genética , Análise de Sequência de DNA , Streptococcus pneumoniae/genética , Tigeciclina
16.
J Antimicrob Chemother ; 70(7): 1946-59, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25862682

RESUMO

OBJECTIVES: The objective of this study was to characterize chromosomal mutations associated with resistance to tetracycline in Streptococcus pneumoniae. METHODS: Chronological appearance of mutations in two S. pneumoniae R6 mutants (R6M1TC-5 and R6M2TC-4) selected for resistance to tetracycline was determined by next-generation sequencing. A role for the mutations identified was confirmed by reconstructing resistance to tetracycline in a S. pneumoniae R6 WT background. RNA sequencing was performed on R6M1TC-5 and R6M2TC-4 and the relative expression of genes was reported according to R6. Differentially expressed genes were classified according to their ontology. RESULTS: WGS of R6M1TC-5 and R6M2TC-4 revealed mutations in the gene rpsJ coding for the ribosomal protein S10 and in the promoter region and coding sequences of the ABC genes patA and patB. These cells were cross-resistant to ciprofloxacin. Resistance reconstruction confirmed a role in resistance for the mutations in rpsJ and patA. Overexpression of the ABC transporter PatA/PatB or mutations in the coding sequence of patA contributed to resistance to tetracycline, ciprofloxacin and ethidium bromide, and was associated with a decreased accumulation of [(3)H]tetracycline. Comparative transcriptome profiling of the resistant mutants further revealed that, in addition to the overexpression of patA and patB, several genes of the thiamine biosynthesis and salvage pathway were increased in the two mutants, but also in clinical isolates resistant to tetracycline. This overexpression most likely contributes to the tetracycline resistance phenotype. CONCLUSIONS: The combination of genomic and transcriptomic analysis coupled to functional studies has allowed the discovery of novel tetracycline resistance mutations in S. pneumoniae.


Assuntos
Mutação , RNA Bacteriano/biossíntese , RNA Mensageiro/biossíntese , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/genética , Resistência a Tetraciclina , Tetraciclina/farmacologia , DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Dados de Sequência Molecular , RNA Bacteriano/genética , RNA Mensageiro/genética , Seleção Genética , Análise de Sequência de DNA
17.
PLoS Biol ; 12(5): e1001868, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24844805

RESUMO

Gene amplification of specific loci has been described in all kingdoms of life. In the protozoan parasite Leishmania, the product of amplification is usually part of extrachromosomal circular or linear amplicons that are formed at the level of direct or inverted repeated sequences. A bioinformatics screen revealed that repeated sequences are widely distributed in the Leishmania genome and the repeats are chromosome-specific, conserved among species, and generally present in low copy number. Using sensitive PCR assays, we provide evidence that the Leishmania genome is continuously being rearranged at the level of these repeated sequences, which serve as a functional platform for constitutive and stochastic amplification (and deletion) of genomic segments in the population. This process is adaptive as the copy number of advantageous extrachromosomal circular or linear elements increases upon selective pressure and is reversible when selection is removed. We also provide mechanistic insights on the formation of circular and linear amplicons through RAD51 recombinase-dependent and -independent mechanisms, respectively. The whole genome of Leishmania is thus stochastically rearranged at the level of repeated sequences, and the selection of parasite subpopulations with changes in the copy number of specific loci is used as a strategy to respond to a changing environment.


Assuntos
Amplificação de Genes , Genoma de Protozoário , Sequências Repetidas Invertidas , Leishmania braziliensis/genética , Leishmania infantum/genética , Leishmania major/genética , Sequências Repetitivas de Ácido Nucleico , Adaptação Fisiológica/genética , Biologia Computacional , Variações do Número de Cópias de DNA , Leishmania braziliensis/metabolismo , Leishmania infantum/metabolismo , Leishmania major/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Especificidade da Espécie , Processos Estocásticos
18.
Genome Res ; 19(7): 1214-23, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19351617

RESUMO

Linezolid is a member of a novel class of antibiotics, with resistance already being reported. We used whole-genome sequencing on three independent Streptococcus pneumoniae strains made resistant to linezolid in vitro in a step-by-step fashion. Analysis of the genome assemblies revealed mutations in the 23S rRNA gene in all mutants including, notably, G2576T, a previously recognized resistance mutation. Mutations in an additional 31 genes were also found in at least one of the three sequenced genomes. We concentrated on three new mutations that were found in at least two independent mutants. All three mutations were experimentally confirmed to be involved in antibiotic resistance. Mutations upstream of the ABC transporter genes spr1021 and spr1887 were correlated with increased expression of these genes and neighboring genes of the same operon. Gene inactivation supported a role for these ABC transporters in resistance to linezolid and other antibiotics. The hypothetical protein spr0333 contains an RNA methyltransferase domain, and mutations within that domain were found in all S. pneumoniae linezolid-resistant strains. Primer extension experiments indicated that spr0333 methylates G2445 of the 23S rRNA and mutations in spr0333 abolished this methylation. Reintroduction of a nonmutated version of spr0333 in resistant bacteria reestablished G2445 methylation and led to cells being more sensitive to linezolid and other antibiotics. Interestingly, the spr0333 ortholog was also mutated in a linezolid-resistant clinical Staphylococcus aureus isolate. Whole-genome sequencing and comparative analyses of S. pneumoniae resistant isolates was useful for discovering novel resistance mutations.


Assuntos
Acetamidas/farmacologia , Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana/fisiologia , Genoma Bacteriano , Oxazolidinonas/farmacologia , Streptococcus pneumoniae/genética , Proteínas de Bactérias/genética , Sequência de Bases , Regulação Bacteriana da Expressão Gênica , Linezolida , Dados de Sequência Molecular , Mutação/genética , Filogenia , RNA Ribossômico 23S/genética , Homologia de Sequência do Ácido Nucleico , Streptococcus pneumoniae/efeitos dos fármacos , tRNA Metiltransferases/genética
19.
Exp Cell Res ; 313(11): 2283-92, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17490643

RESUMO

Fanconi anemia (FA) cells are abnormally sensitive to DNA cross-linking agents with increased levels of apoptosis and chromosomal instability. Defects in eight FA complementation groups inhibit monoubiquitination of FANCD2, and subsequent recruitment of FANCD2 to DNA damage and S-phase-associated nuclear foci. The specific functional defect in repair or response to DNA damage in FA cells remains unknown. Damage-resistant DNA synthesis is present 2.5-5 h after cross-linker treatment of FANCC, FANCA and FANCD2-deficient cells. Analysis of the size distribution of labeled DNA replication strands revealed that diepoxybutane treatment suppressed labeling of early but not late-firing replicons in FANCC-deficient cells. In contrast, normal responses to ionizing radiation were observed in FANCC-deficient cells. Absence of this late S-phase response in FANCC-deficient cells leads to activation of secondary checkpoint responses.


Assuntos
Reagentes de Ligações Cruzadas/toxicidade , Replicação do DNA/genética , Proteína do Grupo de Complementação C da Anemia de Fanconi/fisiologia , Anemia de Fanconi/genética , Origem de Replicação/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular , DNA/efeitos dos fármacos , Dano ao DNA/genética , Reparo do DNA/genética , Compostos de Epóxi/toxicidade , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Proteína do Grupo de Complementação A da Anemia de Fanconi/fisiologia , Proteína do Grupo de Complementação C da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/fisiologia , Humanos , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Fase S/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
20.
Anat Rec A Discov Mol Cell Evol Biol ; 288(2): 158-65, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16419078

RESUMO

Recently, two orthologues of the Drosophila homeobox Cut gene, Cux-1 and Cux-2, have been identified as restricted molecular markers of upper layer (II-IV) neurons in the murine cerebral cortex. We show that during early postnatal life, from P0 to P10, Cux-1 and Cux-2 mRNA are coexpressed in all primary sensory cortices. Antisera to Cux-1 and Cux-2 immunoreactivities preferentially label neurons in the barrel walls of the primary somatosensory cortex (S1). Subsequently, Cux-1 remains enriched in sensory cortices, whereas Cux-2 expression enlarges to comprise the frontal and insular areas. The laminar distribution of Cux-1 and Cux-2 differs: Cux-1 follows a layer IV to layer II decreasing gradient of expression, whereas Cux-2 expression is homogeneous across layers IV-II. No colocalization was found with GABA and birth dating experiments showed that Cux-1-positive neurons in layer IV are born during a restricted period, E13.5-E14.5, suggesting that Cux-1 is a useful molecular marker of the glutamatergic neurons of layer IV. We examined Cux-1 and Cux-2 in barrel-defective mouse strains, the VMAT2 KO, the MAOA KO, and the Adcyl 1(brl) strain. A normal expression level of Cux-1 and Cux-2 was found in layer IV, despite the lack of segregation of the neurons as barrels. Conversely, in Reeler mice, Cux-1 and Cux-2 had a distinct laminar distribution: the Cux-1-positive neurons had an inverted deep localization, whereas the Cux-2-positive neurons were distributed throughout the cortical thickness, suggesting that Cux-2 expression is more widely expressed in the inverted cortex of reeler mutants. Our results indicate that Cux-1 is a useful marker of the layer IV neurons in S1, and that Cux-1 and Cux-2 are differently regulated in the upper layers of the cerebral cortex.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Córtex Somatossensorial/metabolismo , Animais , Animais Recém-Nascidos , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Córtex Cerebral/ultraestrutura , Feminino , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Knockout , Camundongos Mutantes Neurológicos , Neurônios/metabolismo , Neurônios/ultraestrutura , Proteínas Nucleares/genética , Gravidez , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA