Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 95(10)2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33658347

RESUMO

Transcriptional profiling provides global snapshots of virus-mediated cellular reprogramming, which can simultaneously encompass pro- and antiviral components. To determine early transcriptional signatures associated with HCV infection of authentic target cells, we performed ex vivo infections of adult primary human hepatocytes (PHHs) from seven donors. Longitudinal sampling identified minimal gene dysregulation at six hours post infection (hpi). In contrast, at 72 hpi, massive increases in the breadth and magnitude of HCV-induced gene dysregulation were apparent, affecting gene classes associated with diverse biological processes. Comparison with HCV-induced transcriptional dysregulation in Huh-7.5 cells identified limited overlap between the two systems. Of note, in PHHs, HCV infection initiated broad upregulation of canonical interferon (IFN)-mediated defense programs, limiting viral RNA replication and abrogating virion release. We further find that constitutive expression of IRF1 in PHHs maintains a steady-state antiviral program in the absence of infection, which can additionally reduce HCV RNA translation and replication. We also detected infection-induced downregulation of ∼90 genes encoding components of the EIF2 translation initiation complex and ribosomal subunits in PHHs, consistent with a signature of translational shutoff. As HCV polyprotein translation occurs independently of the EIF2 complex, this process is likely pro-viral: only translation initiation of host transcripts is arrested. The combination of antiviral intrinsic and inducible immunity, balanced against pro-viral programs, including translational arrest, maintains HCV replication at a low-level in PHHs. This may ultimately keep HCV under the radar of extra-hepatocyte immune surveillance while initial infection is established, promoting tolerance, preventing clearance and facilitating progression to chronicity.IMPORTANCEAcute HCV infections are often asymptomatic and therefore frequently undiagnosed. We endeavored to recreate this understudied phase of HCV infection using explanted PHHs and monitored host responses to initial infection. We detected temporally distinct virus-induced perturbations in the transcriptional landscape, which were initially narrow but massively amplified in breadth and magnitude over time. At 72 hpi, we detected dysregulation of diverse gene programs, concurrently promoting both virus clearance and virus persistence. On the one hand, baseline expression of IRF1 combined with infection-induced upregulation of IFN-mediated effector genes suppresses virus propagation. On the other, we detect transcriptional signatures of host translational inhibition, which likely reduces processing of IFN-regulated gene transcripts and facilitates virus survival. Together, our data provide important insights into constitutive and virus-induced transcriptional programs in PHHs, and identifies simultaneous antagonistic dysregulation of pro-and anti-viral programs which may facilitate host tolerance and promote viral persistence.

2.
Gut ; 70(9): 1734-1745, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33323394

RESUMO

OBJECTIVE: Neutralising antibodies are key effectors of infection-induced and vaccine-induced immunity. Quantification of antibodies' breadth and potency is critical for understanding the mechanisms of protection and for prioritisation of vaccines. Here, we used a unique collection of human specimens and HCV strains to develop HCV reference viruses for quantification of neutralising antibodies, and to investigate viral functional diversity. DESIGN: We profiled neutralisation potency of polyclonal immunoglobulins from 104 patients infected with HCV genotype (GT) 1-6 across 13 HCV strains representing five viral GTs. Using metric multidimensional scaling, we plotted HCV neutralisation onto neutralisation maps. We employed K-means clustering to guide virus clustering and selecting representative strains. RESULTS: Viruses differed greatly in neutralisation sensitivity, with J6 (GT2a) being most resistant and SA13 (GT5a) being most sensitive. They mapped to six distinct neutralisation clusters, in part composed of viruses from different GTs. There was no correlation between viral neutralisation and genetic distance, indicating functional neutralisation clustering differs from sequence-based clustering. Calibrating reference viruses representing these clusters against purified antibodies from 496 patients infected by GT1 to GT6 viruses readily identified individuals with extraordinary potent and broadly neutralising antibodies. It revealed comparable antibody cross-neutralisation and diversity between specimens from diverse viral GTs, confirming well-balanced reporting of HCV cross-neutralisation across highly diverse human samples. CONCLUSION: Representative isolates from six neutralisation clusters broadly reconstruct the functional HCV neutralisation space. They enable high resolution profiling of HCV neutralisation and they may reflect viral functional and antigenic properties important to consider in HCV vaccine design.


Assuntos
Anticorpos Neutralizantes/sangue , Hepacivirus/imunologia , Anticorpos Anti-Hepatite C/sangue , Hepatite C/imunologia , Sequência de Aminoácidos , Anticorpos Neutralizantes/imunologia , Hepacivirus/genética , Hepatite C/virologia , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia
3.
Sci Adv ; 6(45)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33148654

RESUMO

Hepatitis C virus (HCV) has no animal reservoir, infecting only humans. To investigate species barrier determinants limiting infection of rodents, murine liver complementary DNA library screening was performed, identifying transmembrane proteins Cd302 and Cr1l as potent restrictors of HCV propagation. Combined ectopic expression in human hepatoma cells impeded HCV uptake and cooperatively mediated transcriptional dysregulation of a noncanonical program of immunity genes. Murine hepatocyte expression of both factors was constitutive and not interferon inducible, while differences in liver expression and the ability to restrict HCV were observed between the murine orthologs and their human counterparts. Genetic ablation of endogenous Cd302 expression in human HCV entry factor transgenic mice increased hepatocyte permissiveness for an adapted HCV strain and dysregulated expression of metabolic process and host defense genes. These findings highlight human-mouse differences in liver-intrinsic antiviral immunity and facilitate the development of next-generation murine models for preclinical testing of HCV vaccine candidates.


Assuntos
Hepacivirus , Hepatite C , Animais , Hepacivirus/genética , Camundongos , Camundongos Transgênicos , Internalização do Vírus
4.
Med Microbiol Immunol ; 209(4): 499-514, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32322956

RESUMO

An estimated number of 71 million people are living with chronic hepatitis C virus (HCV) infection worldwide and 400,000 annual deaths are related to the infection. HCV entry into the hepatocytes is complex and involves several host factors. The tetraspanin human CD81 (hCD81) is one of the four essential entry factors and is composed of one large extracellular loop, one small extracellular loop, four transmembrane domains, one intracellular loop and two intracellular tails. The large extracellular loop interacts with the E2 glycoprotein of HCV. Regions outside the large extracellular loop (backbone) of hCD81 have a critical role in post-binding entry steps and determine susceptibility of hepatocytes to HCV. Here, we investigated the effect of five non-synonymous single-nucleotide variants in the backbone of hCD81 on HCV susceptibility. We generated cell lines that stably express the hCD81 variants and infected the cells using HCV pseudoparticles and cell culture-derived HCV. Our results show that all the tested hCD81 variants support HCV pseudoparticle entry with similar efficiency as wild-type hCD81. In contrast, variants A54V, V211M and M220I are less supportive to cell culture-derived HCV infection. This altered susceptibility is HCV genotype dependent and specifically affected the cell entry step. Our findings identify three hCD81 genetic variants that are impaired in their function as HCV host factors for specific viral genotypes. This study provides additional evidence that genetic host variation contributes to inter-individual differences in HCV infection and outcome.


Assuntos
Hepatite C Crônica/metabolismo , Tetraspanina 28/genética , Tetraspanina 28/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Linhagem Celular Tumoral/virologia , Células HEK293/virologia , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Mutação Puntual , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus
5.
Hepatology ; 60(2): 508-20, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24771613

RESUMO

UNLABELLED: The Japanese fulminant hepatitis-1 (JFH1)-based hepatitis C virus (HCV) infection system has permitted analysis of the complete viral replication cycle in vitro. However, lack of robust infection systems for primary, patient-derived isolates limits systematic functional studies of viral intrahost variation and vaccine development. Therefore, we aimed at developing cell culture models for incorporation of primary patient-derived glycoproteins into infectious HCV particles for in-depth mechanistic studies of envelope gene function. To this end, we first constructed a packaging cell line expressing core, p7, and NS2 based on the highly infectious Jc1 genotype (GT) 2a chimeric genome. We show that this packaging cell line can be transfected with HCV replicons encoding cognate Jc1-derived glycoprotein genes for production of single-round infectious particles by way of trans-complementation. Testing replicons expressing representative envelope protein genes from all major HCV genotypes, we observed that virus production occurred in a genotype- and isolate-dependent fashion. Importantly, primary GT 2 patient-derived glycoproteins were efficiently incorporated into infectious particles. Moreover, replacement of J6 (GT 2a) core, p7, and NS2 with GT 1a-derived H77 proteins allowed production of infectious HCV particles with GT 1 patient-derived glycoproteins. Notably, adaptive mutations known to enhance virus production from GT 1a-2a chimeric genomes further increased virus release. Finally, virus particles with primary patient-derived E1-E2 proteins possessed biophysical properties comparable to Jc1 HCVcc particles, used CD81 for cell entry, were associated with ApoE and could be neutralized by immune sera. CONCLUSION: This work describes cell culture systems for production of infectious HCV particles with primary envelope protein genes from GT 1 and GT 2-infected patients, thus opening up new opportunities to dissect envelope gene function in an individualized fashion.


Assuntos
Glicoproteínas/metabolismo , Hepacivirus/metabolismo , Hepatite C/metabolismo , Hepatite C/virologia , Vírion/metabolismo , Anticorpos Monoclonais/imunologia , Apolipoproteínas E/metabolismo , Teste de Complementação Genética , Células HEK293 , Hepacivirus/imunologia , Hepatite C/imunologia , Humanos , Testes de Neutralização , Filogenia , RNA Viral/genética , RNA Viral/metabolismo , Tetraspanina 28/metabolismo , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Vacinas contra Hepatite Viral/imunologia , Vírion/imunologia , Replicação Viral/imunologia , Replicação Viral/fisiologia
6.
Hepatology ; 59(1): 78-88, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23873628

RESUMO

UNLABELLED: Only humans and chimpanzees are susceptible to chronic infection by hepatitis C virus (HCV). The restricted species tropism of HCV is determined by distinct host factor requirements at different steps of the viral life cycle. In addition, effective innate immune targeting precludes efficient propagation of HCV in nonhuman cells. Species-specificity of HCV host factor usage for cell entry and virus release has been explored. However, the reason for inefficient HCV RNA replication efficiency in mouse liver cells remains elusive. To address this, we generated novel mouse liver-derived cell lines with specific lesions in mitochondrial antiviral signaling protein (MAVS), interferon regulatory factor 3 (IRF3), or Interferon-α/ß receptor (IFNAR) by in vivo immortalization. Blunted innate immune responses in these cells modestly increased HCV RNA replication. However, ectopic expression of liver-specific human microRNA 122 (miR-122) further boosted RNA replication in all knockout cell lines. Remarkably, MAVS(-/-) miR-122 cells sustained vigorous HCV RNA replication, attaining levels comparable to the highly permissive human hepatoma cell line Huh-7.5. RNA replication was dependent on mouse cyclophilin and phosphatidylinositol-4 kinase III alpha (PI4KIIIα) and was also observed after transfection of full-length viral RNA. Additionally, ectopic expression of either human or mouse apolipoprotein E (ApoE) was sufficient to permit release of infectious particles. Finally, expression of human entry cofactors rendered these cells permissive to HCV infection, thus confirming that all steps of the HCV replication cycle can be reconstituted in mouse liver-derived cells. CONCLUSION: Blunted innate immunity, abundant miR-122, and HCV entry factor expression permits propagation of HCV in mouse liver-derived cell lines.


Assuntos
Hepacivirus/fisiologia , Replicação Viral , 1-Fosfatidilinositol 4-Quinase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apolipoproteínas E/metabolismo , Linhagem Celular Tumoral , Ciclofilinas/metabolismo , Humanos , Imunidade Inata , Fígado/virologia , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , RNA Viral/metabolismo , Internalização do Vírus
7.
J Virol ; 88(1): 667-78, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24173227

RESUMO

Serine is encoded by two divergent codon types, UCN and AGY, which are not interchangeable by a single nucleotide substitution. Switching between codon types therefore occurs via intermediates (threonine or cysteine) or via simultaneous tandem substitutions. Hepatitis C virus (HCV) chronically infects 2 to 3% of the global population. The highly variable glycoproteins E1 and E2 decorate the surface of the viral envelope, facilitate cellular entry, and are targets for host immunity. Comparative sequence analysis of globally sampled E1E2 genes, coupled with phylogenetic analysis, reveals the signatures of multiple archaic codon-switching events at seven highly conserved serine residues. Limited detection of intermediate phenotypes indicates that associated fitness costs restrict their fixation in divergent HCV lineages. Mutational pathways underlying codon switching were probed via reverse genetics, assessing glycoprotein functionality using multiple in vitro systems. These data demonstrate selection against intermediate phenotypes can act at the structural/functional level, with some intermediates displaying impaired virion assembly and/or decreased capacity for target cell entry. These effects act in residue/isolate-specific manner. Selection against intermediates is also provided by humoral targeting, with some intermediates exhibiting increased epitope exposure and enhanced neutralization sensitivity, despite maintaining a capacity for target cell entry. Thus, purifying selection against intermediates limits their frequencies in globally sampled strains, with divergent functional constraints at the protein level restricting the fixation of deleterious mutations. Overall our study provides an experimental framework for identification of barriers limiting viral substitutional evolution and indicates that serine codon-switching represents a genomic "fossil record" of historical purifying selection against E1E2 intermediate phenotypes.


Assuntos
Códon , Evolução Molecular , Glicoproteínas/química , Hepacivirus/química , Serina/química , Glicoproteínas/genética , Fenótipo , Filogenia
8.
J Virol ; 87(24): 13297-306, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24089562

RESUMO

Hepatitis C virus (HCV) is highly variable and associated with chronic liver disease. Viral isolates are grouped into seven genotypes (GTs). Accumulating evidence indicates that viral determinants in the core to NS2 proteins modulate the efficiency of virus production. However, the role of the glycoproteins E1 and E2 in this process is currently poorly defined. Therefore, we constructed chimeric viral genomes to explore the role of E1 and E2 in HCV assembly. Comparison of the kinetics and efficiency of particle production by intragenotypic chimeras highlighted core and p7 as crucial determinants for efficient virion release. Glycoprotein sequences, however, had only a minimal impact on this process. In contrast, in the context of intergenotypic HCV chimeras, HCV assembly was profoundly influenced by glycoprotein genes. On the one hand, insertion of GT1a-derived (H77) E1-E2 sequences into a chimeric GT2a virus (Jc1) strongly suppressed virus production. On the other hand, replacement of H77 glycoproteins within the GT1a-GT2a chimeric genome H77/C3 by GT2a-derived (Jc1) E1-E2 increased infectious particle production. Thus, within intergenotypic chimeras, glycoprotein features strongly modulate virus production. Replacement of Jc1 glycoprotein genes by H77-derived E1-E2 did not grossly affect subcellular localization of core, E2, and NS2. However, it caused an accumulation of nonenveloped core protein and increased abundance of nonenveloped core protein structures with slow sedimentation. These findings reveal an important role for the HCV glycoproteins E1 and E2 in membrane envelopment, which likely depends on a genotype-specific interplay with additional viral factors.


Assuntos
Quimera/fisiologia , Hepacivirus/fisiologia , Hepatite C/virologia , Proteínas do Envelope Viral/metabolismo , Linhagem Celular , Quimera/classificação , Quimera/genética , Genótipo , Hepacivirus/classificação , Hepacivirus/genética , Humanos , Proteínas do Envelope Viral/genética , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA