Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
J Infect Dis ; 230(Supplement_2): S141-S149, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39255394

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder with limited therapeutic options. Accordingly, new approaches for prevention and treatment are needed. One focus is the human microbiome, the consortium of microorganisms that live in and on us, which contributes to human immune, metabolic, and cognitive development and that may have mechanistic roles in neurodegeneration. AD and Alzheimer's disease-related dementias (ADRD) are recognized as spectrum disorders with complex pathobiology. AD/ADRD onset begins before overt clinical signs, but initiation triggers remain undefined. We posit that disruption of the normal gut microbiome in early life leads to a pathological cascade within septohippocampal and cortical brain circuits. We propose investigation to understand how early-life microbiota changes may lead to hallmark AD pathology in established AD/ADRD models. Specifically, we hypothesize that antibiotic exposure in early life leads to exacerbated AD-like disease endophenotypes that may be amenable to specific microbiological interventions. We propose suitable models for testing these hypotheses.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Animais , Humanos , Doença de Alzheimer/microbiologia , Doença de Alzheimer/fisiopatologia , Antibacterianos/administração & dosagem , Antibacterianos/efeitos adversos , Encéfalo/microbiologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Modelos Animais de Doenças , Eixo Encéfalo-Intestino/efeitos dos fármacos , Eixo Encéfalo-Intestino/fisiologia
2.
Neurobiol Aging ; 144: 30-42, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39265450

RESUMO

Individuals with DS develop Alzheimer's disease (AD) neuropathology, including endosomal-lysosomal system abnormalities and degeneration of basal forebrain cholinergic neurons (BFCNs). We investigated whether maternal choline supplementation (MCS) affects early endosome pathology within BFCNs using the Ts65Dn mouse model of DS/AD. Ts65Dn and disomic (2N) offspring from dams administered MCS were analyzed for endosomal pathology at 3-4 months or 10-12 months. Morphometric analysis of early endosome phenotype was performed on individual BFCNs using Imaris. The effects of MCS on the endosomal interactome were interrogated by relative co-expression (RCE) analysis. MCS effectively reduced age- and genotype-associated increases in early endosome number in Ts65Dn and 2N offspring, and prevented increases in early endosome size in Ts65Dn offspring. RCE revealed a loss of interactome cooperativity among endosome genes in Ts65Dn offspring that was restored by MCS. These findings demonstrate MCS rescues early endosome pathology, a driver of septohippocampal circuit dysfunction. The genotype-independent benefits of MCS on endosomal phenotype indicate translational applicability as an early-life therapy for DS as well as other neurodevelopmental/neurodegenerative disorders involving endosomal pathology.

3.
Acta Neuropathol ; 148(1): 16, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39105932

RESUMO

We elucidated the molecular fingerprint of vulnerable excitatory neurons within select cortical lamina of individuals with Down syndrome (DS) for mechanistic understanding and therapeutic potential that also informs Alzheimer's disease (AD) pathophysiology. Frontal cortex (BA9) layer III (L3) and layer V (L5) pyramidal neurons were microisolated from postmortem human DS and age- and sex-matched controls (CTR) to interrogate differentially expressed genes (DEGs) and key biological pathways relevant to neurodegenerative programs. We identified > 2300 DEGs exhibiting convergent dysregulation of gene expression in both L3 and L5 pyramidal neurons in individuals with DS versus CTR subjects. DEGs included over 100 triplicated human chromosome 21 genes in L3 and L5 neurons, demonstrating a trisomic neuronal karyotype in both laminae. In addition, thousands of other DEGs were identified, indicating gene dysregulation is not limited to trisomic genes in the aged DS brain, which we postulate is relevant to AD pathobiology. Convergent L3 and L5 DEGs highlighted pertinent biological pathways and identified key pathway-associated targets likely underlying corticocortical neurodegeneration and related cognitive decline in individuals with DS. Select key DEGs were interrogated as potential hub genes driving dysregulation, namely the triplicated DEGs amyloid precursor protein (APP) and superoxide dismutase 1 (SOD1), along with key signaling DEGs including mitogen activated protein kinase 1 and 3 (MAPK1, MAPK3) and calcium calmodulin dependent protein kinase II alpha (CAMK2A), among others. Hub DEGs determined from multiple pathway analyses identified potential therapeutic candidates for amelioration of cortical neuron dysfunction and cognitive decline in DS with translational relevance to AD.


Assuntos
Síndrome de Down , Lobo Frontal , Células Piramidais , Síndrome de Down/patologia , Síndrome de Down/genética , Síndrome de Down/metabolismo , Humanos , Células Piramidais/patologia , Células Piramidais/metabolismo , Masculino , Feminino , Lobo Frontal/patologia , Lobo Frontal/metabolismo , Pessoa de Meia-Idade , Idoso , Fenótipo , Adulto , Idoso de 80 Anos ou mais
4.
J Alzheimers Dis ; 100(s1): S341-S362, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39031371

RESUMO

Background: Individuals with Down syndrome (DS) have intellectual disability and develop Alzheimer's disease (AD) pathology during midlife, particularly in the hippocampal component of the medial temporal lobe memory circuit. However, molecular and cellular mechanisms underlying selective vulnerability of hippocampal CA1 neurons remains a major knowledge gap during DS/AD onset. This is compounded by evidence showing spatial (e.g., deep versus superficial) localization of pyramidal neurons (PNs) has profound effects on activity and innervation within the CA1 region. Objective: We investigated whether there is a spatial profiling difference in CA1 PNs in an aged female DS/AD mouse model. We posit dysfunction may be dependent on spatial localization and innervation patterns within discrete CA1 subfields. Methods: Laser capture microdissection was performed on trisomic CA1 PNs in an established mouse model of DS/AD compared to disomic controls, isolating the entire CA1 pyramidal neuron layer and sublayer microisolations of deep and superficial PNs from the distal CA1 (CA1a) region. Results: RNA sequencing and bioinformatic inquiry revealed dysregulation of CA1 PNs based on spatial location and innervation patterns. The entire CA1 region displayed the most differentially expressed genes (DEGs) in trisomic mice reflecting innate DS vulnerability, while trisomic CA1a deep PNs exhibited fewer but more physiologically relevant DEGs, as evidenced by bioinformatic inquiry. Conclusions: CA1a deep neurons displayed numerous DEGs linked to cognitive functions whereas CA1a superficial neurons, with approximately equal numbers of DEGs, were not linked to pathways of dysregulation, suggesting the spatial location of vulnerable CA1 PNs plays an important role in circuit dissolution.


Assuntos
Região CA1 Hipocampal , Síndrome de Down , Células Piramidais , Animais , Síndrome de Down/genética , Síndrome de Down/patologia , Síndrome de Down/metabolismo , Células Piramidais/metabolismo , Feminino , Região CA1 Hipocampal/metabolismo , Camundongos , Modelos Animais de Doenças , Envelhecimento , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Camundongos Transgênicos
5.
Curr Opin Struct Biol ; 88: 102886, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39003916

RESUMO

Protein-protein interactions (PPIs) play a crucial role in cellular function and disease manifestation, with dysfunctions in PPI networks providing a direct link between stressors and phenotype. The dysfunctional Protein-Protein Interactome (dfPPI) platform, formerly known as epichaperomics, is a newly developed chemoproteomic method aimed at detecting dynamic changes at the systems level in PPI networks under stressor-induced cellular perturbations within disease states. This review provides an overview of dfPPIs, emphasizing the novel methodology, data analytics, and applications in disease research. dfPPI has applications in cancer research, where it identifies dysfunctions integral to maintaining malignant phenotypes and discovers strategies to enhance the efficacy of current therapies. In neurodegenerative disorders, dfPPI uncovers critical dysfunctions in cellular processes and stressor-specific vulnerabilities. Challenges, including data complexity and the potential for integration with other omics datasets are discussed. The dfPPI platform is a potent tool for dissecting disease systems biology by directly informing on dysfunctions in PPI networks and holds promise for advancing disease identification and therapeutics.


Assuntos
Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Humanos , Mapeamento de Interação de Proteínas/métodos , Proteômica/métodos , Doenças Neurodegenerativas/metabolismo , Neoplasias/metabolismo , Biologia de Sistemas/métodos
6.
Biomedicines ; 12(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38927459

RESUMO

Neurodegenerative disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD), represent debilitating conditions with complex, poorly understood pathologies. Epichaperomes, pathologic protein assemblies nucleated on key chaperones, have emerged as critical players in the molecular dysfunction underlying these disorders. In this study, we introduce the synthesis and characterization of clickable epichaperome probes, PU-TCO, positive control, and PU-NTCO, negative control. Through comprehensive in vitro assays and cell-based investigations, we establish the specificity of the PU-TCO probe for epichaperomes. Furthermore, we demonstrate the efficacy of PU-TCO in detecting epichaperomes in brain tissue with a cellular resolution, underscoring its potential as a valuable tool for dissecting single-cell responses in neurodegenerative diseases. This clickable probe is therefore poised to address a critical need in the field, offering unprecedented precision and versatility in studying epichaperomes and opening avenues for novel insights into their role in disease pathology.

7.
Elife ; 122024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904658

RESUMO

Maternal choline supplementation (MCS) improves cognition in Alzheimer's disease (AD) models. However, the effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated the effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice are generalized EEG spikes (interictal spikes [IIS]). IIS also are common in other mouse models and occur in AD patients. In mouse models, hyperexcitability is also reflected by elevated expression of the transcription factor ∆FosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. Therefore, we studied ΔFosB expression in GCs. We also studied the neuronal marker NeuN within hilar neurons of the DG because reduced NeuN protein expression is a sign of oxidative stress or other pathology. This is potentially important because hilar neurons regulate GC excitability. Tg2576 breeding pairs received a diet with a relatively low, intermediate, or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ∆FosB expression was reduced, and hilar NeuN expression was restored. Using the novel object location task, spatial memory improved. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB protein expression. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB, and spatial memory in an animal model of AD.


Assuntos
Doença de Alzheimer , Colina , Suplementos Nutricionais , Modelos Animais de Doenças , Animais , Doença de Alzheimer/metabolismo , Colina/administração & dosagem , Colina/metabolismo , Camundongos , Feminino , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Masculino , Giro Denteado/metabolismo , Giro Denteado/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a DNA
8.
Traffic ; 25(5): e12937, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38777335

RESUMO

The polymorphic APOE gene is the greatest genetic determinant of sporadic Alzheimer's disease risk: the APOE4 allele increases risk, while the APOE2 allele is neuroprotective compared with the risk-neutral APOE3 allele. The neuronal endosomal system is inherently vulnerable during aging, and APOE4 exacerbates this vulnerability by driving an enlargement of early endosomes and reducing exosome release in the brain of humans and mice. We hypothesized that the protective effects of APOE2 are, in part, mediated through the endosomal pathway. Messenger RNA analyses showed that APOE2 leads to an enrichment of endosomal pathways in the brain when compared with both APOE3 and APOE4. Moreover, we show age-dependent alterations in the recruitment of key endosomal regulatory proteins to vesicle compartments when comparing APOE2 to APOE3. In contrast to the early endosome enlargement previously shown in Alzheimer's disease and APOE4 models, we detected similar morphology and abundance of early endosomes and retromer-associated vesicles within cortical neurons of aged APOE2 targeted-replacement mice compared with APOE3. Additionally, we observed increased brain extracellular levels of endosome-derived exosomes in APOE2 compared with APOE3 mice during aging, consistent with enhanced endosomal cargo clearance by exosomes to the extracellular space. Our findings thus demonstrate that APOE2 enhances an endosomal clearance pathway, which has been shown to be impaired by APOE4 and which may be protective due to APOE2 expression during brain aging.


Assuntos
Envelhecimento , Apolipoproteína E2 , Encéfalo , Endossomos , Exossomos , Animais , Humanos , Camundongos , Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Apolipoproteína E2/metabolismo , Apolipoproteína E2/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E3/genética , Apolipoproteína E4/metabolismo , Apolipoproteína E4/genética , Encéfalo/metabolismo , Endossomos/metabolismo , Exossomos/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo
9.
J Neuroinflammation ; 21(1): 130, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750510

RESUMO

Epidemiological studies have unveiled a robust link between exposure to repetitive mild traumatic brain injury (r-mTBI) and elevated susceptibility to develop neurodegenerative disorders, notably chronic traumatic encephalopathy (CTE). The pathogenic lesion in CTE cases is characterized by the accumulation of hyperphosphorylated tau in neurons around small cerebral blood vessels which can be accompanied by astrocytes that contain phosphorylated tau, the latter termed tau astrogliopathy. However, the contribution of tau astrogliopathy to the pathobiology and functional consequences of r-mTBI/CTE or whether it is merely a consequence of aging remains unclear. We addressed these pivotal questions by utilizing a mouse model harboring tau-bearing astrocytes, GFAPP301L mice, subjected to our r-mTBI paradigm. Despite the fact that r-mTBI did not exacerbate tau astrogliopathy or general tauopathy, it increased phosphorylated tau in the area underneath the impact site. Additionally, gene ontology analysis of tau-bearing astrocytes following r-mTBI revealed profound alterations in key biological processes including immunological and mitochondrial bioenergetics. Moreover, gene array analysis of microdissected astrocytes accrued from stage IV CTE human brains revealed an immunosuppressed astroglial phenotype similar to tau-bearing astrocytes in the GFAPP301L model. Additionally, hippocampal reduction of proteins involved in water transport (AQP4) and glutamate homeostasis (GLT1) was found in the mouse model of tau astrogliopathy. Collectively, these findings reveal the importance of understanding tau astrogliopathy and its role in astroglial pathobiology under normal circumstances and following r-mTBI. The identified mechanisms using this GFAPP301L model may suggest targets for therapeutic interventions in r-mTBI pathogenesis in the context of CTE.


Assuntos
Aquaporina 4 , Astrócitos , Transportador 2 de Aminoácido Excitatório , Camundongos Transgênicos , Tauopatias , Proteínas tau , Animais , Humanos , Masculino , Camundongos , Aquaporina 4/metabolismo , Aquaporina 4/genética , Astrócitos/metabolismo , Astrócitos/patologia , Concussão Encefálica/metabolismo , Concussão Encefálica/patologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/biossíntese , Camundongos Endogâmicos C57BL , Fenótipo , Proteínas tau/metabolismo , Proteínas tau/genética , Tauopatias/metabolismo , Tauopatias/patologia , Tauopatias/genética
10.
Brain Commun ; 6(2): fcae082, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572270

RESUMO

The posterior cingulate cortex (PCC) is a key hub of the default mode network underlying autobiographical memory retrieval, which falters early in the progression of Alzheimer's disease (AD). We recently performed RNA sequencing of post-mortem PCC tissue samples from 26 elderly Rush Religious Orders Study participants who came to autopsy with an ante-mortem diagnosis of no cognitive impairment but who collectively displayed a range of Braak I-IV neurofibrillary tangle stages. Notably, cognitively unimpaired subjects displaying high Braak stages may represent cognitive resilience to AD pathology. Transcriptomic data revealed elevated synaptic and ATP-related gene expression in Braak Stages III/IV compared with Stages I/II, suggesting these pathways may be related to PCC resilience. We also mined expression profiles for small non-coding micro-RNAs (miRNAs), which regulate mRNA stability and may represent an underexplored potential mechanism of resilience through the fine-tuning of gene expression within complex cellular networks. Twelve miRNAs were identified as differentially expressed between Braak Stages I/II and III/IV. However, the extent to which the levels of all identified miRNAs were associated with subject demographics, neuropsychological test performance and/or neuropathological diagnostic criteria within this cohort was not explored. Here, we report that a total of 667 miRNAs are significantly associated (rho > 0.38, P < 0.05) with subject variables. There were significant positive correlations between miRNA expression levels and age, perceptual orientation and perceptual speed. By contrast, higher miRNA levels correlated negatively with semantic and episodic memory. Higher expression of 15 miRNAs associated with lower Braak Stages I-II and 47 miRNAs were associated with higher Braak Stages III-IV, suggesting additional mechanistic influences of PCC miRNA expression with resilience. Pathway analysis showed enrichment for miRNAs operating in pathways related to lysine degradation and fatty acid synthesis and metabolism. Finally, we demonstrated that the 12 resilience-related miRNAs differentially expressed in Braak Stages I/II versus Braak Stages III/IV were predicted to regulate mRNAs related to amyloid processing, tau and inflammation. In summary, we demonstrate a dynamic state wherein differential PCC miRNA levels are associated with cognitive performance and post-mortem neuropathological AD diagnostic criteria in cognitively intact elders. We posit these relationships may inform miRNA transcriptional alterations within the PCC relevant to potential early protective (resilience) or pathogenic (pre-clinical or prodromal) responses to disease pathogenesis and thus may be therapeutic targets.

11.
Res Sq ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38645031

RESUMO

The intricate protein-chaperone network is vital for cellular function. Recent discoveries have unveiled the existence of specialized chaperone complexes called epichaperomes, protein assemblies orchestrating the reconfiguration of protein-protein interaction networks, enhancing cellular adaptability and proliferation. This study delves into the structural and regulatory aspects of epichaperomes, with a particular emphasis on the significance of post-translational modifications in shaping their formation and function. A central finding of this investigation is the identification of specific PTMs on HSP90, particularly at residues Ser226 and Ser255 situated within an intrinsically disordered region, as critical determinants in epichaperome assembly. Our data demonstrate that the phosphorylation of these serine residues enhances HSP90's interaction with other chaperones and co-chaperones, creating a microenvironment conducive to epichaperome formation. Furthermore, this study establishes a direct link between epichaperome function and cellular physiology, especially in contexts where robust proliferation and adaptive behavior are essential, such as cancer and stem cell maintenance. These findings not only provide mechanistic insights but also hold promise for the development of novel therapeutic strategies targeting chaperone complexes in diseases characterized by epichaperome dysregulation, bridging the gap between fundamental research and precision medicine.

12.
Alzheimers Dement ; 20(3): 2262-2272, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38270275

RESUMO

Individuals with Down syndrome (DS) have a partial or complete trisomy of chromosome 21, resulting in an increased risk for early-onset Alzheimer's disease (AD)-type dementia by early midlife. Despite ongoing clinical trials to treat late-onset AD, individuals with DS are often excluded. Furthermore, timely diagnosis or management is often not available. Of the genetic causes of AD, people with DS represent the largest cohort. Currently, there is a knowledge gap regarding the underlying neurobiological mechanisms of DS-related AD (DS-AD), partly due to limited access to well-characterized brain tissue and biomaterials for research. To address this challenge, we created an international consortium of brain banks focused on collecting and disseminating brain tissue from persons with DS throughout their lifespan, named the Down Syndrome Biobank Consortium (DSBC) consisting of 11 biobanking sites located in Europe, India, and the USA. This perspective describes the DSBC harmonized protocols and tissue dissemination goals.


Assuntos
Doença de Alzheimer , Síndrome de Down , Humanos , Síndrome de Down/genética , Bancos de Espécimes Biológicos , Doença de Alzheimer/genética , Encéfalo , Europa (Continente)
13.
eNeuro ; 11(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38164567

RESUMO

Brain-derived neurotrophic factor (BDNF) is important in the development and maintenance of neurons and their plasticity. Hippocampal BDNF has been implicated in Alzheimer's disease (AD) because hippocampal levels in AD patients and AD animal models are often downregulated, suggesting that reduced BDNF contributes to AD. However, the location where hippocampal BDNF protein is most highly expressed, the mossy fiber (MF) axons of dentate gyrus granule cells (GCs), has been understudied, and not in controlled conditions. Therefore, we evaluated MF BDNF protein in the Tg2576 mouse model of AD. Tg2576 and wild-type (WT) mice of both sexes were examined at 2-3 months of age, when amyloid-ß (Aß) is present in neurons but plaques are absent, and 11-20 months of age, after plaque accumulation. As shown previously, WT mice exhibited high levels of MF BDNF protein. Interestingly, there was no significant decline with age in either the genotype or sex. Notably, MF BDNF protein was correlated with GC ΔFosB, a transcription factor that increases after 1-2 weeks of elevated neuronal activity. We also report the novel finding that Aß in GCs or the GC layer was minimal even at old ages. The results indicate that MF BDNF is stable in the Tg2576 mouse, and MF BDNF may remain unchanged due to increased GC neuronal activity, since BDNF expression is well known to be activity dependent. The resistance of GCs to long-term Aß accumulation provides an opportunity to understand how to protect vulnerable neurons from increased Aß levels and therefore has translational implications.


Assuntos
Doença de Alzheimer , Humanos , Masculino , Feminino , Camundongos , Animais , Lactente , Doença de Alzheimer/patologia , Fibras Musgosas Hipocampais/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Peptídeos beta-Amiloides/metabolismo , Giro Denteado/fisiologia
14.
bioRxiv ; 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-37214805

RESUMO

Maternal choline supplementation (MCS) improves cognition in Alzheimer's disease (AD) models. However, effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice, and many other mouse models and AD patients, are generalized EEG spikes (interictal spikes; IIS). Hyperexcitability is also reflected by elevated expression of the transcription factor ΔFosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. We also studied the hilus of the DG because hilar neurons regulate GC excitability. We found reduced expression of the neuronal marker NeuN within hilar neurons in Tg2576 mice, which other studies have shown is a sign of oxidative stress or other pathology. Tg2576 breeding pairs received a diet with a relatively low, intermediate or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ΔFosB expression was reduced, and NeuN expression was restored. Spatial memory improved using the novel object location task. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB and spatial memory in an animal model of AD.

15.
Neurobiol Dis ; 188: 106332, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37890559

RESUMO

Down syndrome (DS) is a genetic disorder caused by triplication of human chromosome 21. In addition to intellectual disability, DS is defined by a premature aging phenotype and Alzheimer's disease (AD) neuropathology, including septohippocampal circuit vulnerability and degeneration of basal forebrain cholinergic neurons (BFCNs). The Ts65Dn mouse model recapitulates key aspects of DS/AD pathology, namely age-associated atrophy of BFCNs and cognitive decline in septohippocampal-dependent behavioral tasks. We investigated whether maternal choline supplementation (MCS), a well-tolerated treatment modality, protects vulnerable BFCNs from age- and genotype-associated degeneration in trisomic offspring. We also examined the effect of trisomy, and MCS, on GABAergic basal forebrain parvalbumin neurons (BFPNs), an unexplored neuronal population in this DS model. Unbiased stereological analyses of choline acetyltransferase (ChAT)-immunoreactive BFCNs and parvalbumin-immunoreactive BFPNs were conducted using confocal z-stacks of the medial septal nucleus and the vertical limb of the diagonal band (MSN/VDB) in Ts65Dn mice and disomic (2N) littermates at 3-4 and 10-12 months of age. MCS trisomic offspring displayed significant increases in ChAT-immunoreactive neuron number and density compared to unsupplemented counterparts, as well as increases in the area of the MSN/VDB occupied by ChAT-immunoreactive neuropil. MCS also rescued BFPN number and density in Ts65Dn offspring, a novel rescue of a non-cholinergic cell population. Furthermore, MCS prevented age-associated loss of BFCNs and MSN/VDB regional area in 2N offspring, indicating genotype-independent neuroprotective benefits. These findings demonstrate MCS provides neuroprotection of vulnerable BFCNs and non-cholinergic septohippocampal BFPNs, indicating this modality has translational value as an early life therapy for DS, as well as extending benefits to the aging population at large.


Assuntos
Doença de Alzheimer , Prosencéfalo Basal , Síndrome de Down , Humanos , Animais , Camundongos , Idoso , Parvalbuminas , Neurônios GABAérgicos , Colina O-Acetiltransferase , Modelos Animais de Doenças , Degeneração Neural , Suplementos Nutricionais , Colina
16.
Nat Commun ; 14(1): 3742, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353488

RESUMO

Systems-level assessments of protein-protein interaction (PPI) network dysfunctions are currently out-of-reach because approaches enabling proteome-wide identification, analysis, and modulation of context-specific PPI changes in native (unengineered) cells and tissues are lacking. Herein, we take advantage of chemical binders of maladaptive scaffolding structures termed epichaperomes and develop an epichaperome-based 'omics platform, epichaperomics, to identify PPI alterations in disease. We provide multiple lines of evidence, at both biochemical and functional levels, demonstrating the importance of these probes to identify and study PPI network dysfunctions and provide mechanistically and therapeutically relevant proteome-wide insights. As proof-of-principle, we derive systems-level insight into PPI dysfunctions of cancer cells which enabled the discovery of a context-dependent mechanism by which cancer cells enhance the fitness of mitotic protein networks. Importantly, our systems levels analyses support the use of epichaperome chemical binders as therapeutic strategies aimed at normalizing PPI networks.


Assuntos
Neoplasias , Mapas de Interação de Proteínas , Humanos , Proteoma/metabolismo , Mapeamento de Interação de Proteínas , Neoplasias/genética , Aclimatação
17.
J Clin Med ; 12(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176744

RESUMO

Single-cell and single-population RNA sequencing (RNA-seq) is a rapidly evolving new field of intense investigation. Recent studies indicate unique transcriptomic profiles are derived based on the spatial localization of neurons within circuits and regions. Individual neuronal subtypes can have vastly different transcriptomic fingerprints, well beyond the basic excitatory neuron and inhibitory neuron designations. To study single-population gene expression profiles of spatially characterized neurons, we have developed a methodology combining laser capture microdissection (LCM), RNA purification of single populations of neurons, and subsequent library preparation for downstream applications, including RNA-seq. LCM provides the benefit of isolating single neurons characterized by morphology or via transmitter-identified and/or receptor immunoreactivity and enables spatial localization within the sample. We utilize unfixed human postmortem and mouse brain tissue that is frozen to preserve RNA quality in order to isolate the desired neurons of interest. Microisolated neurons are then pooled for RNA purification utilizing as few as 250 individual neurons from a tissue section, precluding extraneous nonspecific tissue contaminants. Library preparation is performed from picogram RNA quantities extracted from LCM-captured neurons. Single-population RNA-seq analysis demonstrates that microisolated neurons from both postmortem human and mouse brain tissues are viable for transcriptomic profiling, including differential gene expression assessment and bioinformatic pathway inquiry.

18.
FASEB J ; 37(6): e22944, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37191946

RESUMO

Basal forebrain cholinergic neuron (BFCN) degeneration is a hallmark of Down syndrome (DS) and Alzheimer's disease (AD). Current therapeutics in these disorders have been unsuccessful in slowing disease progression, likely due to poorly understood complex pathological interactions and dysregulated pathways. The Ts65Dn trisomic mouse model recapitulates both cognitive and morphological deficits of DS and AD, including BFCN degeneration and has shown lifelong behavioral changes due to maternal choline supplementation (MCS). To test the impact of MCS on trisomic BFCNs, we performed laser capture microdissection to individually isolate choline acetyltransferase-immunopositive neurons in Ts65Dn and disomic littermates, in conjunction with MCS at the onset of BFCN degeneration. We utilized single population RNA sequencing (RNA-seq) to interrogate transcriptomic changes within medial septal nucleus (MSN) BFCNs. Leveraging multiple bioinformatic analysis programs on differentially expressed genes (DEGs) by genotype and diet, we identified key canonical pathways and altered physiological functions within Ts65Dn MSN BFCNs, which were attenuated by MCS in trisomic offspring, including the cholinergic, glutamatergic and GABAergic pathways. We linked differential gene expression bioinformatically to multiple neurological functions, including motor dysfunction/movement disorder, early onset neurological disease, ataxia and cognitive impairment via Ingenuity Pathway Analysis. DEGs within these identified pathways may underlie aberrant behavior in the DS mice, with MCS attenuating the underlying gene expression changes. We propose MCS ameliorates aberrant BFCN gene expression within the septohippocampal circuit of trisomic mice through normalization of principally the cholinergic, glutamatergic, and GABAergic signaling pathways, resulting in attenuation of underlying neurological disease functions.


Assuntos
Doença de Alzheimer , Prosencéfalo Basal , Síndrome de Down , Camundongos , Animais , Síndrome de Down/genética , Síndrome de Down/metabolismo , Camundongos Transgênicos , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/patologia , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Colina/metabolismo , Suplementos Nutricionais
19.
bioRxiv ; 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37214931

RESUMO

The neurotrophin brain-derived neurotrophic factor (BDNF) is important in development and maintenance of neurons and their plasticity. Hippocampal BDNF has been implicated Alzheimer's disease (AD) because hippocampal levels in AD patients and AD animal models are consistently downregulated, suggesting that reduced BDNF contributes to AD. However, the location where hippocampal BDNF protein is most highly expressed, the mossy fiber (MF) axons of dentate gyrus (DG) granule cells (GCs), has been understudied, and never in controlled in vivo conditions. We examined MF BDNF protein in the Tg2576 mouse model of AD. Tg2576 and wild type (WT) mice of both sexes were examined at 2-3 months of age, when amyloid-ß (Aß) is present in neurons but plaques are absent, and 11-20 months of age, after plaque accumulation. As shown previously, WT mice exhibited high levels of MF BDNF protein. Interestingly, there was no significant decline with age in either genotype or sex. Notably, we found a correlation between MF BDNF protein and GC ΔFosB, a transcription factor that increases after 1-2 weeks of elevated neuronal activity. Remarkably, there was relatively little evidence of Aß in GCs or the GC layer even at old ages. Results indicate MF BDNF is stable in the Tg2576 mouse, and MF BDNF may remain unchanged due to increased GC neuronal activity, since BDNF expression is well known to be activity-dependent. The resistance of GCs to long-term Aß accumulation provides an opportunity to understand how to protect other vulnerable neurons from increased Aß levels and therefore has translational implications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA