Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Euro Surveill ; 29(16)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38639092

RESUMO

Since late 2023, the Metropolitan City of Milan and surrounding areas (northern Italy) have been experiencing a resurgence of measles, with most cases detected starting from January 2024. During this brief period, we observed measles in travellers from endemic areas, participants in international events, vaccinees and healthcare workers. Indigenous cases have also been identified. Even though we have not yet identified large and disruptive outbreaks, strengthening surveillance and vaccination activities is pivotal to help limit the impact of measles spread.


Assuntos
Vírus do Sarampo , Sarampo , Humanos , Vírus do Sarampo/genética , Sarampo/epidemiologia , Sarampo/prevenção & controle , Surtos de Doenças , Vacinação , Itália/epidemiologia , Vacina contra Sarampo
3.
Biomed Pharmacother ; 168: 115682, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37832410

RESUMO

Natural products are a rich source of bioactive molecules that have potential pharmacotherapeutic applications. In this study, we focused on Artemisia annua (A. annua) and its enriched extracts which were biologically evaluated in vitro as virucidal, antiviral, and antioxidant agents, with a potential application against the COVID-19 infection. The crude extract showed virucidal, antiviral and antioxidant effects in concentrations that did not affect cell viability. Scopoletin, arteannuin B and artemisinic acid (single fractions isolated from A. annua) exerted a considerable virucidal and antiviral effect in vitro starting from a concentration of 50 µg/mL. Data from Surface Plasmon Resonance (SPR) showed that the inhibition of the viral infection was due to the interaction of these compounds with the 3CLpro and Spike proteins of SARS-CoV-2, suggesting that the main interaction of compounds may interfere with the viral pathways during the insertion and the replication process. The present study suggests that natural extract of A. annua and its components could have a key role as antioxidants and antiviral agents and support the fight against SARS-CoV-2 variants and other possible emerging Coronaviruses.


Assuntos
Artemisia annua , COVID-19 , SARS-CoV-2 , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Artemisia annua/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Antivirais/farmacologia , Antivirais/metabolismo
4.
ACS Infect Dis ; 9(7): 1310-1318, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37358826

RESUMO

The current SARS-CoV-2 pandemic and the likelihood that new coronavirus strains will emerge in the immediate future point out the urgent need to identify new pan-coronavirus inhibitors. Strigolactones (SLs) are a class of plant hormones with multifaceted activities whose roles in plant-related fields have been extensively explored. Recently, we proved that SLs also exert antiviral activity toward herpesviruses, such as human cytomegalovirus (HCMV). Here we show that the synthetic SLs TH-EGO and EDOT-EGO impair ß-coronavirus replication including SARS-CoV-2 and the common cold human coronavirus HCoV-OC43. Interestingly, in silico simulations suggest the binding of SLs in the SARS-CoV-2 main protease (Mpro) active site, and this was further confirmed by an in vitro activity assay. Overall, our results highlight the potential efficacy of SLs as broad-spectrum antivirals against ß-coronaviruses, which may provide the rationale for repurposing this class of hormones for the treatment of COVID-19 patients.


Assuntos
COVID-19 , Humanos , Antivirais/farmacologia , Antivirais/química , SARS-CoV-2 , Peptídeo Hidrolases
5.
Biomedicines ; 11(2)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36831149

RESUMO

The emergence of the new pathogen SARS-CoV-2 determined a rapid need for monoclonal antibodies (mAbs) to detect the virus in biological fluids as a rapid tool to identify infected individuals to be treated or quarantined. The majority of commercially available antigenic tests for SARS-CoV-2 rely on the detection of N antigen in biologic fluid using anti-N antibodies, and their capacity to specifically identify subjects infected by SARS-CoV-2 is questionable due to several structural analogies among the N proteins of different coronaviruses. In order to produce new specific antibodies, BALB/c mice were immunized three times at 20-day intervals with a recombinant spike (S) protein. The procedure used was highly efficient, and 40 different specific mAbs were isolated, purified and characterized, with 13 ultimately being selected for their specificity and lack of cross reactivity with other human coronaviruses. The specific epitopes recognized by the selected mAbs were identified through a peptide library and/or by recombinant fragments of the S protein. In particular, the selected mAbs recognized different linear epitopes along the S1, excluding the receptor binding domain, and along the S2 subunits of the S protein of SARS-CoV-2 and its major variants of concern. We identified combinations of anti-S mAbs suitable for use in ELISA or rapid diagnostic tests, with the highest sensitivity and specificity coming from proof-of-concept tests using recombinant antigens, SARS-CoV-2 or biological fluids from infected individuals, that represent important additional tools for the diagnosis of COVID-19.

6.
Biomed Pharmacother ; 158: 114083, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36495668

RESUMO

COronaVIrus Disease 2019 (COVID-19) is a newly emerging infectious disease that spread across the world, caused by the novel coronavirus Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2). Despite the advancements in science that led to the creation of the vaccine, there is still an urgent need for new antiviral drugs effective against SARS-CoV-2. This study aimed to investigate the antiviral effect of Paulownia tomentosa Steud extract against SARS-CoV-2 and to evaluate its antioxidant properties, including respiratory smooth muscle relaxant effects. Our results showed that P. tomentosa extract can inhibit viral replication by directly interacting with both the 3-chymotrypsin-like protease and spike protein. In addition, the phyto complex does not reduce lung epithelial cell viability and exerts a protective action in those cells damaged by tert-butyl hydroperoxide , a toxic agent able to alter cells' functions via increased oxidative stress. These data suggest the potential role of P. tomentosa extract in COVID-19 treatment, since this extract is able to act both as an antiviral and a cytoprotective agent in vitro.


Assuntos
COVID-19 , Humanos , Antivirais/uso terapêutico , SARS-CoV-2 , Antioxidantes/farmacologia , Tratamento Farmacológico da COVID-19 , Extratos Vegetais/farmacologia , Músculo Liso
7.
Data Brief ; 43: 108447, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35864873

RESUMO

Biofilm at water-oil interface of hypoxic water columns of microcosms, prepared from a lacustrine sample, that used diesel as a carbon source was found to show electrogenic properties. These microcosms named, Liquid Microbial Fuel Cells (L-MFCs) were electrically characterized using a custom electronic analyzer; accurate determination of voltage (V), power density (W/m 2), and current density (A/m2) for both charge and discharge phases was carried out. The instrument made it possible to carry out cell characterizations using resistive loads between 0 Ω (Ohm) and 10 kΩ. During the hypoxic and electrogenic phase, the synthesis of a system of "bacterial piping induction", produced filaments of hundreds of micrometers in which the microbial cells are hosted. Ultrastructural microscopy collected by scanning (SEM), transmission (TEM), immunofluorescence, Thunder Imager 3D, confocal laser scanning (CLSM) microscopy revealed a "myelin like" structure during filamentation processes; this "myelin like" structure exhibited cross-reactivity towards different epitopes of the myelin basic protein (MBP) and Claudin 11 (O4) of human oligodendrocytes. The disclosure of these filamentation processes could be helpful to describe further unconventional microbial structures in aquatic ecosystems and of the animal world. The data that support the findings of this study are openly available in at https://data.mendeley.com/datasets/7d35tj3j96/1.

8.
Viruses ; 14(4)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35458463

RESUMO

Subacute sclerosing panencephalitis (SSPE) is a late complication of measles virus infection that occurs in previously healthy children. This disease has no specific cure and is associated with a high degree of disability and mortality. In recent years, there has been an increase in its incidence in relation to a reduction in vaccination adherence, accentuated by the COVID-19 pandemic. In this article, we take stock of the current evidence on SSPE and report our personal clinical experience. We emphasise that, to date, the only effective protection strategy against this disease is vaccination against the measles virus.


Assuntos
COVID-19 , Sarampo , Panencefalite Esclerosante Subaguda , COVID-19/prevenção & controle , Criança , Humanos , Sarampo/epidemiologia , Sarampo/prevenção & controle , Vírus do Sarampo , Pandemias , Panencefalite Esclerosante Subaguda/epidemiologia , Panencefalite Esclerosante Subaguda/etiologia , Panencefalite Esclerosante Subaguda/prevenção & controle , Vacinação/efeitos adversos
9.
Antioxidants (Basel) ; 10(11)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34829666

RESUMO

The COVID-19 pandemic represents an unprecedented global emergency. Despite all efforts, COVID-19 remains a threat to public health, due to the complexity of mass vaccination programs, the lack of effective drugs, and the emergence of new variants. A link has recently been found between the risk of developing a severe COVID-19 infection and a high level of oxidative stress. In this context, we have focused our attention on natural compounds with the aim of finding molecules capable of acting through a dual virucidal-antioxidant mechanism. In particular, we studied the potential of grapefruit seed extracts (GSE) and their main components, belonging to the class of limonoids. Using chemical and biological approaches including isolation and purification of GSE, antioxidant and virucidal assays, we have shown that grapefruit seed constituents, belonging to the class of limonoids, are endowed with remarkable virucidal, antioxidant and mitoprotective activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA