Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(21): 25819-25830, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37191386

RESUMO

This paper reports on a new strategy for obtaining homogeneous dispersion of grafted quantum dots (QDs) in a photopolymer matrix and their use for the integration of single-photon sources by two-photon polymerization (TPP) with nanoscale precision. The method is based on phase transfer of QDs from organic solvents to an acrylic matrix. The detailed protocol is described, and the corresponding mechanism is investigated and revealed. The phase transfer is done by ligand exchange through the introduction of mono-2-(methacryloyloxy) ethyl succinate (MES) that replaces oleic acid (OA). Infrared (IR) measurements show the replacement of OA on the QD surface by MES after ligand exchange. This allows QDs to move from the hexane phase to the pentaerythritol triacrylate (PETA) phase. The QDs that are homogeneously dispersed in the photopolymer without any clusterization do not show any significant broadening in their photoluminescence spectra even after more than 3 years. The ability of the hybrid photopolymer to create micro- and nanostructures by two-photon polymerization is demonstrated. The homogeneity of emission from 2D and 3D microstructures is confirmed by confocal photoluminescence microscopy. The fabrication and integration of a single-photon source in a spatially controlled manner by TPP is achieved and confirmed by auto-correlation measurements.

2.
Colloids Surf B Biointerfaces ; 222: 113070, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36495697

RESUMO

Biomaterial surface modification through the introduction of defined and repeated patterns of topography helps study cell behavior in response to defined geometrical cues. The lithographic molding technique is widely used for conferring biomaterial surface microscale cues and enhancing the performance of biomedical devices. In this work, different master molds made by UV mask lithography were used to prepare poly (D,L-lactide-co-glycolide) - PLGA micropatterned membranes to present different features of topography at the cellular interface: channels, circular pillars, rectangular pillars, and pits. The effects of geometrical cues were investigated on different cell sources, such as neuronal cells, myoblasts, and stem cells. Morphological evaluation revealed a peculiar cell arrangement in response to a specific topographical stimulus sensed over the membrane surface. Cells seeded on linear-grooved membranes showed that this cue promoted elongated cell morphology. Rectangular and circular pillars act instead as discontinuous cues at the cell-membrane interface, inducing cell growth in multiple directions. The array of pits over the surface also highlighted the precise spatiotemporal organization of the cell; they grew between the interconnected membrane space within the pits, avoiding the microscale hole. The overall approach allowed the evaluation of the responses of different cell types adhered to various surface patterns, build-up on the same polymeric membrane, and disclosing the effect of specific topographical features. We explored how various microtopographic signals play distinct roles in different cells, thus affecting cell adhesion, migration, differentiation, cell-cell interactions, and other metabolic activities.


Assuntos
Sinais (Psicologia) , Células-Tronco Mesenquimais , Materiais Biocompatíveis/farmacologia , Mioblastos , Diferenciação Celular
3.
ACS Appl Mater Interfaces ; 14(15): 17754-17762, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35394738

RESUMO

This paper reports on the nanofabrication of a fiber-reinforced polymer nanocomposite (FRPN) by two-photon direct laser writing (TP-DLW) using silica nanowires (SiO2 NWs) as nanofillers, since they feature a refractive index very close to that of the photoresist used as a polymeric matrix. This allows for the best resolution offered by the TP-DLW technique, even with high loads of SiO2 NWs, up to 70 wt %. The FRPN presented an increase of approximately 4 times in Young's modulus (8.23 GPa) and nanohardness (120 MPa) when compared to those of the bare photoresist, indicating how the proposed technique is well-suited for applications with higher structural requirements. Moreover, three different printing configurations can be implemented thanks to the use of silicon chips, on which the SiO2 NWs are grown, as fabrication substrates. First, they can be effectively used as an adhesive layer when the laser beam is focused at the interface with the silicon substrate. Second, they can be used as a sacrificial layer, when the laser beam is focused in a plane inside the SiO2 NW layer. Third, only the outer shell of the object is printed so that the SiO2 NW tangle acts as the internal skeleton for the structure being fabricated in the so-called shell and scaffold printing strategy.

4.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299086

RESUMO

Multiphoton photoreduction of photosensitive metallic precursors via direct laser writing (DLW) is a promising technique for the synthesis of metallic structures onto solid substrates at the sub-micron scale. DLW triggered by a two photon absorption process is done using a femtosecond NIR laser (λ = 780 nm), tetrachloroauric acid (HAuCl4) as a gold precursor, and isinglass as a natural hydrogel matrix. The presence of a polymeric, transparent matrix avoids unwanted diffusive processes acting as a network for the metallic nanoparticles. After the writing process, a bath in deionized water removes the gold precursor ions and eliminates the polymer matrix. Different aspects underlying the growth of the gold nanostructures (AuNSs) are here investigated to achieve full control on the size and density of the AuNSs. Writing parameters (laser power, exposure time, and scanning speed) are optimized to control the patterns and the AuNSs size. The influence of a second bath containing Au3+ to further control the size and density of the AuNSs is also investigated, observing that these AuNSs are composed of individual gold nanoparticles (AuNPs) that grow individually. A fine-tuning of these parameters leads to an important improvement of the created structures' quality, with a fine control on size and density of AuNSs.


Assuntos
Ouro/química , Lasers , Nanopartículas Metálicas/química , Polímeros/química , Difusão , Íons , Nanopartículas Metálicas/efeitos da radiação , Nanoestruturas
5.
Adv Mater ; 33(18): e2008644, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33783047

RESUMO

A novel technique is developed to improve the resolution of two-photon direct laser writing lithography. Thanks to the high collimation enabled by extraordinary εNZ (near-zero) metamaterial features, ultrathin dielectric hyper-resolute nanostructures are within reach. With respect to the standard direct laser writing approach, a size reduction of 89% and 50%, in height and width respectively, is achieved with the height of the structures adjustable between 5 and 50 nm. The retrieved 2D fabrication parameters are exploited for realizing extremely thin all-dielectric metalenses tailored through deep machine learning codes. The hyper-resolution achieved in the writing process enables the fabrication of a highly detailed dielectric 3D bas-relief (with full height of 500 nm) of Da Vinci's "Lady with an Ermine". The proof-of-concept results show intriguing cues for the current and trendsetting research scenario in anti-counterfeiting applications and ultracompact photonics, paving the way for the realization of all-dielectric and apochromatic ultrathin imaging systems.

6.
Lab Chip ; 12(19): 3760-5, 2012 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-22859213

RESUMO

We report on the fabrication and characterization of a new generation of electro-switchable optofluidic devices based on flexible substrates, combined with the extraordinary properties of reconfigurable soft-materials. A conductive polydimethylsiloxane microstructure has been first sputtered with an Indium Tin Oxide (ITO) layer and then functionalized with an amorphous film of SiO(x). Then, the "layer" by "layer" microstructure has been infiltrated with an anisotropic and reconfigurable fluid (Nematic Liquid Crystal, NLC). The sample has been characterized in terms of morphological, optical and electro-optical properties: the soft-conductive microstructure exhibits a uniform and regular morphology, even after testing with mechanical stretching and deformations. Combination of the conductive ITO with the functionalization film (which has been employed for inducing in-plane alignment of NLC molecules) enables us to carry out a series of optical and electro-optical experiments; these confirm excellent properties in terms of a reconfigurable device and a diffractive element as well.

7.
Glycobiology ; 20(5): 594-602, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20100692

RESUMO

Hydrophobins are small self-assembling proteins produced by fungi. A class I hydrophobin secreted by the basidiomycete fungus Pleurotus ostreatus was purified and identified. The pure protein is not water soluble, whereas complexes formed between the protein and glycans, produced in culture broth containing amylose, are soluble in water. Glycan structure matched to cyclic structures of alpha-(1-4) linked glucose containing from six to 16 monomers (cyclodextrins). Moreover, it was verified that not only pure cyclodextrins but also a linear oligosaccharide and even the simple glucose monomer are able to solubilize the hydrophobin in water. The aqueous solution of the protein-in the presence of the cyclic glucans-showed propensity to self-assembly, and conformational changes towards beta structure were observed on vortexing the solution. On the other hand, the pure protein dissolved in less polar solvent (60% ethanol) is not prone to self assembly, and no conformational change was observed. When the pure protein was deposited on a hydrophobic surface, it formed a very stable biofilm whose thickness was about 3 nm, whereas the biofilm was not detected on a hydrophilic surface. When the water-soluble protein-in the presence of the cyclic glucans-was used, thicker (up to 10-fold) biofilms were obtained on either hydrophilic or hydrophobic surfaces.


Assuntos
Proteínas Fúngicas/química , Glucanos/química , Pleurotus/química , Solubilidade , Água/química
8.
Langmuir ; 23(15): 7920-2, 2007 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-17580922

RESUMO

The anisotropic wet micromachining of silicon, based on a water solution of potassium hydroxide (KOH), is a standard fabrication process that is extensively exploited in the realization of very complex microsystems, which comprise cantilevers, membranes, and bridges. A nanostructured self-assembled biofilm of amphiphilic proteins, the hydrophobins, was deposited on crystalline silicon by solution deposition and characterized by variable-angle spectroscopic ellipsometry (VASE). This procedure formed chemically and mechanically stable mono- and multilayers of self-assembled proteins. The biomolecular membrane has been tested as masking material in the KOH wet etch of the crystalline silicon. The process has been monitored by VASE and atomic force microscopy measurements. Because of the high persistence of the protein biofilm, the hydrophobin-coated silicon surface is perfectly protected during the standard KOH micromachining process.


Assuntos
Biofilmes , Proteínas Fúngicas/química , Hidróxidos/química , Membranas Artificiais , Compostos de Potássio/química , Silício/química , Anisotropia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA