Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Traffic ; 25(1): e12930, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272450

RESUMO

Neuroligins are synaptic cell adhesion proteins with a role in synaptic function, implicated in neurodevelopmental disorders. The autism spectrum disorder-associated substitution Arg451Cys (R451C) in NLGN3 promotes a partial misfolding of the extracellular domain of the protein leading to retention in the endoplasmic reticulum (ER) and the induction of the unfolded protein response (UPR). The reduced trafficking of R451C NLGN3 to the cell surface leads to altered synaptic function and social behavior. A screening in HEK-293 cells overexpressing NLGN3 of 2662 compounds (FDA-approved small molecule drug library), led to the identification of several glucocorticoids such as alclometasone dipropionate, desonide, prednisolone sodium phosphate, and dexamethasone (DEX), with the ability to favor the exit of full-length R451C NLGN3 from the ER. DEX improved the stability of R451C NLGN3 and trafficking to the cell surface, reduced the activation of the UPR, and increased the formation of artificial synapses between HEK-293 and hippocampal primary neurons. The effect of DEX was validated on a novel model system represented by neural stem progenitor cells and differentiated neurons derived from the R451C NLGN3 knock-in mouse, expressing the endogenous protein. This work shows a potential rescue strategy for an autism-linked mutation affecting cell surface trafficking of a synaptic protein.


Assuntos
Transtorno do Espectro Autista , Animais , Humanos , Camundongos , Transtorno do Espectro Autista/genética , Glucocorticoides , Células HEK293 , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Sinapses/metabolismo
2.
Cell Mol Life Sci ; 80(12): 373, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007410

RESUMO

Mitofusin-2 (MFN2) is an outer mitochondrial membrane protein essential for mitochondrial networking in most cells. Autosomal dominant mutations in the MFN2 gene cause Charcot-Marie-Tooth type 2A disease (CMT2A), a severe and disabling sensory-motor neuropathy that impacts the entire nervous system. Here, we propose a novel therapeutic strategy tailored to correcting the root genetic defect of CMT2A. Though mutant and wild-type MFN2 mRNA are inhibited by RNA interference (RNAi), the wild-type protein is restored by overexpressing cDNA encoding functional MFN2 modified to be resistant to RNAi. We tested this strategy in CMT2A patient-specific human induced pluripotent stem cell (iPSC)-differentiated motor neurons (MNs), demonstrating the correct silencing of endogenous MFN2 and replacement with an exogenous copy of the functional wild-type gene. This approach significantly rescues the CMT2A MN phenotype in vitro, stabilizing the altered axonal mitochondrial distribution and correcting abnormal mitophagic processes. The MFN2 molecular correction was also properly confirmed in vivo in the MitoCharc1 CMT2A transgenic mouse model after cerebrospinal fluid (CSF) delivery of the constructs into newborn mice using adeno-associated virus 9 (AAV9). Altogether, our data support the feasibility of a combined RNAi and gene therapy strategy for treating the broad spectrum of human diseases associated with MFN2 mutations.


Assuntos
Doença de Charcot-Marie-Tooth , Células-Tronco Pluripotentes Induzidas , Humanos , Camundongos , Animais , Interferência de RNA , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/terapia , Doença de Charcot-Marie-Tooth/metabolismo , Mutação , Hidrolases/genética , Camundongos Transgênicos
3.
Front Endocrinol (Lausanne) ; 14: 1002914, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755921

RESUMO

Introduction: Trimeric intracellular potassium channels TRIC-A and -B are endoplasmic reticulum (ER) integral membrane proteins, involved in the regulation of calcium release mediated by ryanodine (RyRs) and inositol 1,4,5-trisphosphate (IP3Rs) receptors, respectively. While TRIC-A is mainly expressed in excitable cells, TRIC-B is ubiquitously distributed at moderate level. TRIC-B deficiency causes a dysregulation of calcium flux from the ER, which impacts on multiple collagen specific chaperones and modifying enzymatic activity, leading to a rare form of osteogenesis imperfecta (OI Type XIV). The relevance of TRIC-B on cell homeostasis and the molecular mechanism behind the disease are still unknown. Results: In this study, we exploited zebrafish to elucidate the role of TRIC-B in skeletal tissue. We demonstrated, for the first time, that tmem38a and tmem38b genes encoding Tric-a and -b, respectively are expressed at early developmental stages in zebrafish, but only the latter has a maternal expression. Two zebrafish mutants for tmem38b were generated by CRISPR/Cas9, one carrying an out of frame mutation introducing a premature stop codon (tmem38b-/- ) and one with an in frame deletion that removes the highly conserved KEV domain (tmem38bΔ120-7/Δ120-7 ). In both models collagen type I is under-modified and partially intracellularly retained in the endoplasmic reticulum, as described in individuals affected by OI type XIV. Tmem38b-/- showed a mild skeletal phenotype at the late larval and juvenile stages of development whereas tmem38bΔ120-7/Δ120-7 bone outcome was limited to a reduced vertebral length at 21 dpf. A caudal fin regeneration study pointed towards impaired activity of osteoblasts and osteoclasts associated with mineralization impairment. Discussion: Our data support the requirement of Tric-b during early development and for bone cell differentiation.


Assuntos
Canais Iônicos , Osteogênese Imperfeita , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Osso e Ossos/metabolismo , Cálcio/metabolismo , Diferenciação Celular/genética , Canais Iônicos/genética , Osteogênese Imperfeita/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
4.
J Neurochem ; 165(3): 318-333, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36583243

RESUMO

Neuron generation persists throughout life in the hippocampus but is altered in animal models of neurological and neuropsychiatric diseases, suggesting that disease-associated decline in cognitive and emotional hippocampal-dependent behaviours might be functionally linked with dysregulation of postnatal neurogenesis. Depletion of the adult neural stem/progenitor cell (NSPCs) pool and neurogenic decline have been recently described in mice expressing synaptic susceptibility genes associated with autism spectrum disorder (ASDs). To gain further insight into mechanisms regulating neurogenesis in mice carrying mutations in synaptic genes related to monogenic ASDs, we used the R451C Neuroligin3 knock-in (Nlgn3 KI) mouse, which is characterized by structural brain abnormalities, deficits in synaptic functions and reduced sociability. We show that the number of adult-born neurons, but not the size of the NSPC pool, was reduced in the ventral dentate gyrus in knock-in mice. Notably, this neurogenic decline was rescued by daily injecting mice with 10 mg/Kg of the antidepressant fluoxetine for 20 consecutive days. Sustained treatment also improved KI mice's sociability and increased the number of c-Fos active adult-born neurons, compared with vehicle-injected KI mice. Our study uncovers neurogenesis-mediated alterations in the brain of R451C KI mouse, showing that the R451C Nlgn3 mutation leads to lasting, albeit pharmacologically reversible, changes in the brain, affecting neuron formation in the adult hippocampus. Our results suggest that fluoxetine can ameliorate social behaviour in KI mice, at least in part, by rescuing adult hippocampal neurogenesis, which may be relevant for the pharmacological treatment of ASDs.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Camundongos , Animais , Fluoxetina/farmacologia , Fluoxetina/uso terapêutico , Transtorno Autístico/genética , Antidepressivos/farmacologia , Hipocampo , Neurogênese/fisiologia , Modelos Animais de Doenças , Comportamento Social
5.
Front Endocrinol (Lausanne) ; 13: 1000662, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452329

RESUMO

COMP (Cartilage Oligomeric Matrix Protein), also named thrombospondin-5, is a member of the thrombospondin family of extracellular matrix proteins. It is of clinical relevance, as in humans mutations in COMP lead to chondrodysplasias. The gene encoding zebrafish Comp is located on chromosome 11 in synteny with its mammalian orthologs. Zebrafish Comp has a domain structure identical to that of tetrapod COMP and shares 74% sequence similarity with murine COMP. Zebrafish comp is expressed from 5 hours post fertilization (hpf) on, while the protein is first detectable in somites of 11 hpf embryos. During development and in adults comp is strongly expressed in myosepta, craniofacial tendon and ligaments, around ribs and vertebra, but not in its name-giving tissue cartilage. As in mammals, zebrafish Comp forms pentamers. It is easily extracted from 5 days post fertilization (dpf) whole zebrafish. The lack of Comp expression in zebrafish cartilage implies that its cartilage function evolved recently in tetrapods. The expression in tendon and myosepta may indicate a more fundamental function, as in evolutionary distant Drosophila muscle-specific adhesion to tendon cells requires thrombospondin. A sequence encoding a calcium binding motif within the first TSP type-3 repeat of zebrafish Comp was targeted by CRISPR-Cas. The heterozygous and homozygous mutant Comp zebrafish displayed a patchy irregular Comp staining in 3 dpf myosepta, indicating a dominant phenotype. Electron microscopy revealed that the endoplasmic reticulum of myosepta fibroblasts is not affected in homozygous fish. The disorganized extracellular matrix may indicate that this mutation rather interferes with extracellular matrix assembly, similar to what is seen in a subgroup of chondrodysplasia patients. The early expression and easy detection of mutant Comp in zebrafish points to the potential of using the zebrafish model for large scale screening of small molecules that can improve secretion or function of disease-associated COMP mutants.


Assuntos
Sistemas CRISPR-Cas , Peixe-Zebra , Adulto , Humanos , Camundongos , Animais , Proteína de Matriz Oligomérica de Cartilagem/genética , Peixe-Zebra/genética , Fenótipo , Trombospondinas/genética , Mamíferos
6.
Biomedicines ; 10(2)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35203608

RESUMO

In vivo cell reprogramming of glial cells offers a promising way to generate new neurons in the adult mammalian nervous system. This approach might compensate for neuronal loss occurring in neurological disorders, but clinically viable tools are needed to advance this strategy from bench to bedside. Recently published work has described the successful neuronal conversion of glial cells through the repression of a single gene, polypyrimidine tract-binding protein 1 (Ptbp1), which encodes a key RNA-binding protein. Newly converted neurons not only express correct markers but they also functionally integrate into endogenous brain circuits and modify disease symptoms in in vivo models of neurodegenerative diseases. However, doubts about the nature of "converted" neurons, in particular in vivo, have been raised, based on concerns about tracking reporter genes in converted cells. More robust lineage tracing is needed to draw definitive conclusions about the reliability of this strategy. In vivo reprogramming and the possibility of implementing it with approaches that could be translated into the clinic with antisense oligonucleotides targeting a single gene like Ptbp1 are hot topics. They warrant further investigation with stringent methods and criteria of evaluation for the ultimate treatment of neurological diseases.

7.
PLoS One ; 16(9): e0257254, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34582479

RESUMO

Osteogenesis imperfecta (OI) type XIV is a rare recessive bone disorder characterized by variable degree of severity associated to osteopenia. It is caused by mutations in TMEM38B encoding for the trimeric intracellular cation channel TRIC-B, specific for potassium and ubiquitously present in the endoplasmic reticulum (ER) membrane. OI type XIV molecular basis is largely unknown and, due to the rarity of the disease, the availability of patients' osteoblasts is challenging. Thus, CRISPR/Cas9 was used to knock out (KO) TMEM38B in the human Foetal Osteoblast hFOB 1.19 to obtain an OI type XIV model. CRISPR/Cas9 is a powerful technology to generate in vitro and in vivo models for heritable disorders. Its limited cost and ease of use make this technique widely applicable in most laboratories. Nevertheless, to fully take advantage of this approach, it is important to be aware of its strengths and limitations. Three gRNAs were used and several KO clones lacking the expression of TRIC-B were obtained. Few clones were validated as good models for the disease since they reproduce the altered ER calcium flux, collagen I structure and impaired secretion and osteoblastic markers expression detected in patients' cells. Impaired proliferation and mineralization in KO clones unveiled the relevance of TRIC-B in osteoblasts functionality.


Assuntos
Sistemas CRISPR-Cas , Canais Iônicos/genética , Osteoblastos/metabolismo , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Proliferação de Células , Colágeno/química , Eletrofisiologia , Matriz Extracelular/metabolismo , Técnicas de Inativação de Genes , Humanos , Técnicas In Vitro , Camundongos , Mutação
8.
Int J Mol Sci ; 21(22)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198383

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease with no effective treatment. The Hepatocyte Growth Factor/Scatter Factor (HGF/SF), through its receptor MET, is one of the most potent survival-promoting factors for motor neurons (MN) and is known as a modulator of immune cell function. We recently developed a novel recombinant MET agonist optimized for therapy, designated K1K1. K1K1 was ten times more potent than HGF/SF in preventing MN loss in an in vitro model of ALS. Treatments with K1K1 delayed the onset of muscular impairment and reduced MN loss and skeletal muscle denervation of superoxide dismutase 1 G93A (SOD1G93A) mice. This effect was associated with increased levels of phospho-extracellular signal-related kinase (pERK) in the spinal cord and sciatic nerves and the activation of non-myelinating Schwann cells. Moreover, reduced activated microglia and astroglia, lower T cells infiltration and increased interleukin 4 (IL4) levels were found in the lumbar spinal cord of K1K1 treated mice. K1K1 treatment also prevented the infiltration of T cells in skeletal muscle of SOD1G93A mice. All these protective effects were lost on long-term treatment suggesting a mechanism of drug tolerance. These data provide a rational justification for further exploring the long-term loss of K1K1 efficacy in the perspective of providing a potential treatment for ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Fator de Crescimento de Hepatócito/agonistas , Sistema Imunitário , Neurônios/citologia , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/imunologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Comportamento Animal , Sobrevivência Celular , Técnicas de Cocultura , Modelos Animais de Doenças , Progressão da Doença , Cães , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Gliose/metabolismo , Humanos , Interleucina-4/metabolismo , Kringles , Ligantes , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Neurônios Motores/metabolismo , Neurônios/metabolismo , Células de Schwann/metabolismo , Medula Espinal/metabolismo , Linfócitos T/citologia
9.
Mol Neurobiol ; 57(12): 5121-5129, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32856204

RESUMO

Charcot-Marie-Tooth disease type 2A (CMT2A), arising from mitofusin 2 (MFN2) gene mutations, is the most common inherited axonal neuropathy affecting motor and sensory neurons. The cellular and molecular mechanisms by which MFN2 mutations determine neuronal degeneration are largely unclear. No effective treatment exists for CMT2A, which has a high degree of genetic/phenotypic heterogeneity. The identification of mutations in MFN2 has allowed the generation of diverse transgenic animal models, but to date, their ability to recapitulate the CMT2A phenotype is limited, precluding elucidation of its pathogenesis and discovery of therapeutic strategies. This review will critically present recent progress in in vivo CMT2A disease modeling, discoveries, drawbacks and limitations, current challenges, and key reflections to advance the field towards developing effective therapies for these patients.


Assuntos
Doença de Charcot-Marie-Tooth/patologia , Doença de Charcot-Marie-Tooth/terapia , Modelos Animais de Doenças , Animais , Animais Geneticamente Modificados , Ensaios Clínicos como Assunto , Humanos
10.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354178

RESUMO

Neurodegenerative diseases are disabling and fatal neurological disorders that currently lack effective treatment. Neural stem cell (NSC) transplantation has been studied as a potential therapeutic approach and appears to exert a beneficial effect against neurodegeneration via different mechanisms, such as the production of neurotrophic factors, decreased neuroinflammation, enhanced neuronal plasticity and cell replacement. Thus, NSC transplantation may represent an effective therapeutic strategy. To exploit NSCs' potential, some of their essential biological characteristics must be thoroughly investigated, including the specific markers for NSC subpopulations, to allow profiling and selection. Another key feature is their secretome, which is responsible for the regulation of intercellular communication, neuroprotection, and immunomodulation. In addition, NSCs must properly migrate into the central nervous system (CNS) and integrate into host neuronal circuits, enhancing neuroplasticity. Understanding and modulating these aspects can allow us to further exploit the therapeutic potential of NSCs. Recent progress in gene editing and cellular engineering techniques has opened up the possibility of modifying NSCs to express select candidate molecules to further enhance their therapeutic effects. This review summarizes current knowledge regarding these aspects, promoting the development of stem cell therapies that could be applied safely and effectively in clinical settings.


Assuntos
Células-Tronco Neurais/transplante , Doenças Neurodegenerativas/terapia , Animais , Humanos , Imunomodulação , Fatores de Crescimento Neural/metabolismo , Células-Tronco Neurais/metabolismo , Doenças Neurodegenerativas/imunologia , Transplante de Células-Tronco
11.
Neural Regen Res ; 15(10): 1773-1783, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32246617

RESUMO

In rodents, well characterized neurogenic niches of the adult brain, such as the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampus, support the maintenance of neural/stem progenitor cells (NSPCs) and the production of new neurons throughout the lifespan. The adult neurogenic process is dependent on the intrinsic gene expression signatures of NSPCs that make them competent for self-renewal and neuronal differentiation. At the same time, it is receptive to regulation by various extracellular signals that allow the modulation of neuronal production and integration into brain circuitries by various physiological stimuli. A drawback of this plasticity is the sensitivity of adult neurogenesis to alterations of the niche environment that can occur due to aging, injury or disease. At the core of the molecular mechanisms regulating neurogenesis, several transcription factors have been identified that maintain NSPC identity and mediate NSPC response to extrinsic cues. Here, we focus on REST, Egr1 and Dbx2 and their roles in adult neurogenesis, especially in the subventricular zone. We review recent work from our and other laboratories implicating these transcription factors in the control of NSPC proliferation and differentiation and in the response of NSPCs to extrinsic influences from the niche. We also discuss how their altered regulation may affect the neurogenic process in the aged and in the diseased brain. Finally, we highlight key open questions that need to be addressed to foster our understanding of the transcriptional mechanisms controlling adult neurogenesis.

12.
J Exp Neurosci ; 13: 1179069519829040, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30814846

RESUMO

In the adult rodent brain, the continuous production of new neurons by neural stem/progenitor cells (NSPCs) residing in specialized neurogenic niches and their subsequent integration into pre-existing cerebral circuitries supports odour discrimination, spatial learning, and contextual memory capabilities. Aging is recognized as the most potent negative regulator of adult neurogenesis. The neurogenic process markedly declines in the aged brain, due to the reduction of the NSPC pool and the functional impairment of the remaining NSPCs. This decline has been linked to the progressive cognitive deficits of elderly individuals and it may also be involved in the onset/progression of neurological disorders. Since the human lifespan has been dramatically extended, the incidence of age-associated neuropsychiatric conditions in the human population has increased. This has prompted efforts to shed light on the mechanisms underpinning the age-related decline of adult neurogenesis, whose knowledge may foster therapeutic approaches to prevent or delay cognitive alterations in elderly patients. In this review, we summarize recent progress in elucidating the molecular causes of neurogenic aging in the most abundant NSPC niche of the adult mouse brain: the subventricular zone (SVZ). We discuss the age-associated changes occurring both in the intrinsic NSPC molecular networks and in the extrinsic signalling pathways acting in the complex environment of the SVZ niche, and how all these changes may steer young NSPCs towards an aged phenotype.

13.
Dev Neurosci ; 40(3): 223-233, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29975945

RESUMO

In adult mammals, neural stem cells (NSCs) reside in specialized niches at the level of selected CNS regions, such as the subventricular zone (SVZ). The signaling pathways that reg-ulate NSC proliferation and differentiation remain poorly understood. Early growth response protein 1 (Egr-1) is an important transcription factor, widely studied in the adult mammalian brain, mediating the activation of target genes by a variety of extracellular stimuli. In our study, we aimed at testing how Egr-1 regulates adult NSCs derived from mouse SVZ and, in particular, the interplay between Egr-1 and the proliferative factor EGF. We demonstrate that Egr-1 expression in NSCs is induced by growth factor stimulation, and its level decreases after EGF deprivation or by using AG1478, an inhibitor of the EGF/EGFR signaling pathway. We also show that Egr-1 overexpression rescues the cell proliferation decrease observed either after EGF removal or upon treatment with AG1478, suggesting that Egr-1 works downstream of the EGF pathway. To better understand this mechanism, we investigated targets downstream of both the EGF pathway and Egr-1, and found that they regulate genes involved in NSC proliferation, such as cell cycle regulators, cyclins, and cyclin-dependent kinase inhibitors.


Assuntos
Proliferação de Células/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/farmacologia , Ventrículos Laterais/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Animais , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Ventrículos Laterais/citologia , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia , Fosforilação , Transdução de Sinais/efeitos dos fármacos
14.
J Bone Miner Res ; 33(8): 1489-1499, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29665086

RESUMO

Excessive skeletal deformations and brittle fractures in the vast majority of patients suffering from osteogenesis imperfecta (OI) are a result of substantially reduced bone quality. Because the mechanical competence of bone is dependent on the tissue characteristics at small length scales, it is of crucial importance to assess how OI manifests at the micro- and nanoscale of bone. In this context, the Chihuahua (Chi/+) zebrafish, carrying a heterozygous glycine substitution in the α1 chain of collagen type I, has recently been proposed as a suitable animal model of classical dominant OI, showing skeletal deformities, altered mineralization patterns, and a smaller body size. This study assessed the bone quality properties of Chi/+ at multiple length scales using micro-computed tomography (micro-CT), histomorphometry, quantitative back-scattered electron imaging, Fourier-transform infrared spectroscopy, nanoindentation, and X-ray microscopy. At the skeletal level, the Chi/+ displays smaller body size, deformities, and fracture calli in the ribs. Morphological changes at the whole bone level showed that the vertebrae in Chi/+ had a smaller size, smaller thickness, and distorted shape. At the tissue level, Chi/+ displayed a higher degree of mineralization, lower collagen maturity, lower mineral maturity, altered osteoblast morphology, and lower osteocyte lacunar density compared to wild-type zebrafish. The alterations in the cellular, compositional, and structural properties of Chi/+ bones bear an explanation for the impaired local mechanical properties, which promote an increase in overall bone fragility in Chi/+. The quantitative assessment of bone quality in Chi/+ thus further validates this mutant as an important model reflecting osseous characteristics associated with human classical dominant OI. © 2018 American Society for Bone and Mineral Research.


Assuntos
Osso e Ossos/patologia , Genes Dominantes , Osteogênese Imperfeita/patologia , Peixe-Zebra/fisiologia , Animais , Densidade Óssea , Modelos Animais de Doenças , Humanos , Larva/fisiologia , Osteogênese , Fenótipo
15.
J Neuroinflammation ; 15(1): 65, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29495962

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects the motor neuromuscular system leading to complete paralysis and premature death. The multifactorial nature of ALS that involves both cell-autonomous and non-cell-autonomous processes contributes to the lack of effective therapies, usually targeted to a single pathogenic mechanism. RNS60, an experimental drug containing oxygenated nanobubbles generated by modified Taylor-Couette-Poiseuille flow with elevated oxygen pressure, has shown anti-inflammatory and neuroprotective properties in different experimental paradigms. Since RNS60 interferes with multiple cellular mechanisms known to be involved in ALS pathology, we evaluated its effect in in vitro and in vivo models of ALS. METHODS: Co-cultures of primary microglia/spinal neurons exposed to LPS and astrocytes/spinal neurons from SOD1G93A mice were used to examine the effect of RNS60 or normal saline (NS) on the selective motor neuron degeneration. Transgenic SOD1G93A mice were treated with RNS60 or NS (300 µl/mouse intraperitoneally every other day) starting at the disease onset and examined for disease progression as well as pathological and biochemical alterations. RESULTS: RNS60 protected motor neurons in in vitro paradigms and slowed the disease progression of C57BL/6-SOD1G93A mice through a significant protection of spinal motor neurons and neuromuscular junctions. This was mediated by the (i) activation of an antioxidant response and generation of an anti-inflammatory environment in the spinal cord; (ii) activation of the PI3K-Akt pro-survival pathway in the spinal cord and sciatic nerves; (iii) reduced demyelination of the sciatic nerves; and (iv) elevation of peripheral CD4+/Foxp3+ T regulatory cell numbers. RNS60 did not show the same effects in 129Sv-SOD1G93A mice, which are unable to activate a protective immune response. CONCLUSION: RNS60 demonstrated significant therapeutic efficacy in C57BL/6-SOD1G93A mice by virtue of its effects on multiple disease mechanisms in motor neurons, glial cells, and peripheral immune cells. These findings, together with the excellent clinical safety profile, make RNS60 a promising candidate for ALS therapy and support further studies to unravel its molecular mechanism of action. In addition, the differences in efficacy of RNS60 in SOD1G93A mice of different strains may be relevant for identifying potential markers to predict efficacy in clinical trials.


Assuntos
Esclerose Lateral Amiotrófica/complicações , Esclerose Lateral Amiotrófica/patologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Neuroglia/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Embrião de Mamíferos , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Transtornos Motores/tratamento farmacológico , Transtornos Motores/etiologia , Neurônios Motores/efeitos dos fármacos , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/patologia , Crescimento Neuronal/efeitos dos fármacos , Doenças do Sistema Nervoso Periférico/etiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Cloreto de Sódio/uso terapêutico , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
16.
Stem Cell Res ; 25: 166-178, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29154076

RESUMO

Stem cell therapy is considered a promising approach in the treatment of amyotrophic lateral sclerosis (ALS) and mesenchymal stem cells (MSCs) seem to be the most effective in ALS animal models. The umbilical cord (UC) is a source of highly proliferating fetal MSCs, more easily collectable than other MSCs. Recently we demonstrated that human (h) UC-MSCs, double labeled with fluorescent nanoparticles and Hoechst-33258 and transplanted intracerebroventricularly (ICV) into SOD1G93A transgenic mice, partially migrated into the spinal cord after a single injection. This prompted us to assess the effect of repeated ICV injections of hUC-MSCs on disease progression in SOD1G93A mice. Although no transplanted cells migrated to the spinal cord, a partial but significant protection of motor neurons (MNs) was found in the lumbar spinal cord of hUC-MSCs-treated SOD1G93A mice, accompanied by a shift from a pro-inflammatory (IL-6, IL-1ß) to anti-inflammatory (IL-4, IL-10) and neuroprotective (IGF-1) environment in the lumbar spinal cord, probably linked to the activation of p-Akt survival pathway in both motor neurons and reactive astrocytes. However, this treatment neither prevented the muscle denervation nor delayed the disease progression of mice, emphasizing the growing evidence that protecting the motor neuron perikarya is not sufficient to delay the ALS progression.


Assuntos
Esclerose Lateral Amiotrófica/terapia , Transplante de Células-Tronco Mesenquimais , Neurônios Motores/citologia , Superóxido Dismutase-1/genética , Cordão Umbilical/transplante , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/genética , Animais , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/metabolismo , Mutação Puntual , Superóxido Dismutase-1/metabolismo , Cordão Umbilical/citologia , Cordão Umbilical/metabolismo , Cordão Umbilical/ultraestrutura
17.
Front Cell Neurosci ; 11: 186, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28740463

RESUMO

Cell proliferation and differentiation are interdependent processes. Here, we have asked to what extent the two processes of neural progenitor cell amplification and differentiation are functionally separated. Thus, we analyzed whether it is possible to rescue a defect of terminal differentiation in progenitor cells of the dentate gyrus, where new neurons are generated throughout life, by inducing their proliferation and/or their differentiation with different stimuli appropriately timed. As a model we used the Tis21 knockout mouse, whose dentate gyrus neurons, as demonstrated by us and others, have an intrinsic defect of terminal differentiation. We first tested the effect of two proliferative as well as differentiative neurogenic stimuli, one pharmacological (fluoxetine), the other cognitive (the Morris water maze (MWM) training). Both effectively enhanced the number of new dentate gyrus neurons produced, and fluoxetine also reduced the S-phase length of Tis21 knockout dentate gyrus progenitor cells and increased the rate of differentiation of control cells, but neither factor enhanced the defective rate of differentiation. In contrast, the defect of terminal differentiation was fully rescued by in vivo infection of proliferating dentate gyrus progenitor cells with retroviruses either silencing Id3, an inhibitor of neural differentiation, or expressing NeuroD2, a proneural gene expressed in terminally differentiated dentate gyrus neurons. This is the first demonstration that NeuroD2 or the silencing of Id3 can activate the differentiation of dentate gyrus neurons, complementing a defect of differentiation. It also highlights how the rate of differentiation of dentate gyrus neurons is regulated genetically at several levels and that a neurogenic stimulus for amplification of neural stem/progenitor cells may not be sufficient in itself to modify this rate.

18.
Hum Mol Genet ; 26(15): 2897-2911, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28475764

RESUMO

Classical osteogenesis imperfecta (OI) is a bone disease caused by type I collagen mutations and characterized by bone fragility, frequent fractures in absence of trauma and growth deficiency. No definitive cure is available for OI and to develop novel drug therapies, taking advantage of a repositioning strategy, the small teleost zebrafish (Danio rerio) is a particularly appealing model. Its small size, high proliferative rate, embryo transparency and small amount of drug required make zebrafish the model of choice for drug screening studies, when a valid disease model is available. We performed a deep characterization of the zebrafish mutant Chihuahua, that carries a G574D (p.G736D) substitution in the α1 chain of type I collagen. We successfully validated it as a model for classical OI. Growth of mutants was delayed compared with WT. X-ray, µCT, alizarin red/alcian blue and calcein staining revealed severe skeletal deformity, presence of fractures and delayed mineralization. Type I collagen extracted from different tissues showed abnormal electrophoretic migration and low melting temperature. The presence of endoplasmic reticulum (ER) enlargement due to mutant collagen retention in osteoblasts and fibroblasts of mutant fish was shown by electron and confocal microscopy. Two chemical chaperones, 4PBA and TUDCA, were used to ameliorate the cellular stress and indeed 4PBA ameliorated bone mineralization in larvae and skeletal deformities in adult, mainly acting on reducing ER cisternae size and favoring collagen secretion. In conclusion, our data demonstrated that ER stress is a novel target to ameliorate OI phenotype; chemical chaperones such as 4PBA may be, alone or in combination, a new class of molecules to be further investigated for OI treatment.


Assuntos
Osteogênese Imperfeita/genética , Fenilbutiratos/metabolismo , Animais , Calcificação Fisiológica , Células Cultivadas , Colágeno/genética , Colágeno Tipo I/genética , Fibroblastos , Modelos Animais , Chaperonas Moleculares/metabolismo , Mutação , Osteoblastos , Osteogênese Imperfeita/metabolismo , Fenilbutiratos/uso terapêutico , Dobramento de Proteína , Ácido Tauroquenodesoxicólico/metabolismo , Peixe-Zebra/genética
19.
Hum Mol Genet ; 24(21): 6118-33, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26264579

RESUMO

Osteogenesis imperfecta (OI) is a heritable bone disease with dominant and recessive transmission. It is characterized by a wide spectrum of clinical outcomes ranging from very mild to lethal in the perinatal period. The intra- and inter-familiar OI phenotypic variability in the presence of an identical molecular defect is still puzzling to the research field. We used the OI murine model Brtl(+/-) to investigate the molecular basis of OI phenotypic variability. Brtl(+/-) resembles classical dominant OI and shows either a moderately severe or a lethal outcome associated with the same Gly349Cys substitution in the α1 chain of type I collagen. A systems biology approach was used. We took advantage of proteomic pathway analysis to functionally link proteins differentially expressed in bone and skin of Brtl(+/-) mice with different outcomes to define possible phenotype modulators. The skin/bone and bone/skin hybrid networks highlighted three focal proteins: vimentin, stathmin and cofilin-1, belonging to or involved in cytoskeletal organization. Abnormal cytoskeleton was indeed demonstrated by immunohistochemistry to occur only in tissues from Brtl(+/-) lethal mice. The aberrant cytoskeleton affected osteoblast proliferation, collagen deposition, integrin and TGF-ß signaling with impairment of bone structural properties. Finally, aberrant cytoskeletal assembly was detected in fibroblasts obtained from lethal, but not from non-lethal, OI patients carrying an identical glycine substitution. Our data demonstrated that compromised cytoskeletal assembly impaired both cell signaling and cellular trafficking in mutant lethal mice, altering bone properties. These results point to the cytoskeleton as a phenotypic modulator and potential novel target for OI treatment.


Assuntos
Citoesqueleto/metabolismo , Osteogênese Imperfeita/patologia , Proteínas 14-3-3/metabolismo , Animais , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Cofilina 1/metabolismo , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Proteínas do Citoesqueleto/metabolismo , Modelos Animais de Doenças , Fibroblastos/metabolismo , Genes Letais , Humanos , Integrinas/metabolismo , Camundongos , Camundongos Mutantes , Mutação , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/metabolismo , Fenótipo , Transdução de Sinais , Pele/metabolismo , Tomografia Computadorizada por Raios X , Vimentina/metabolismo
20.
Bone ; 72: 53-64, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25460580

RESUMO

The degradation of the main fibrillar collagens, collagens I and II, is a crucial process for skeletal development. The most abundant dipeptides generated from the catabolism of collagens contain proline and hydroxyproline. In humans, prolidase is the only enzyme able to hydrolyze dipeptides containing these amino acids at their C-terminal end, thus being a key player in collagen synthesis and turnover. Mutations in the prolidase gene cause prolidase deficiency (PD), a rare recessive disorder. Here we describe 12 PD patients, 9 of whom were molecularly characterized in this study. Following a retrospective analysis of all of them a skeletal phenotype associated with short stature, hypertelorism, nose abnormalities, microcephaly, osteopenia and genu valgum, independent of both the type of mutation and the presence of the mutant protein was identified. In order to understand the molecular basis of the bone phenotype associated with PD, we analyzed a recently identified mouse model for the disease, the dark-like (dal) mutant. The dal/dal mice showed a short snout, they were smaller than controls, their femurs were significantly shorter and pQCT and µCT analyses of long bones revealed compromised bone properties at the cortical and at the trabecular level in both male and female animals. The differences were more pronounce at 1 month being the most parameters normalized by 2 months of age. A delay in the formation of the second ossification center was evident at postnatal day 10. Our work reveals that reduced bone growth was due to impaired chondrocyte proliferation and increased apoptosis rate in the proliferative zone associated with reduced hyperthrophic zone height. These data suggest that lack of prolidase, a cytosolic enzyme involved in the final stage of protein catabolism, is required for normal skeletogenesis especially at early age when the requirement for collagen synthesis and degradation is the highest.


Assuntos
Osso e Ossos/patologia , Dipeptidases/metabolismo , Deficiência de Prolidase/metabolismo , Adolescente , Adulto , Animais , Sequência de Bases , Tamanho Corporal , Criança , Pré-Escolar , Citosol/enzimologia , Feminino , Fêmur/patologia , Fibroblastos/enzimologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Dados de Sequência Molecular , Osteoblastos/enzimologia , Fenótipo , Estrutura Terciária de Proteína , Estudos Retrospectivos , Tíbia/patologia , Tomografia Computadorizada por Raios X , Microtomografia por Raio-X , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA