Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Vis Exp ; (194)2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37154542

RESUMO

Protozoan parasites of the genus Leishmania cause leishmaniasis, a disease with variable clinical manifestations that affects millions of people worldwide. Infection with L. donovani can result in fatal visceral disease. In Panama, Colombia, and Costa Rica, L. panamensis is responsible for most of the reported cases of cutaneous and mucocutaneous leishmaniasis. Studying a large number of drug candidates with the methodologies available to date is quite difficult, given that they are very laborious for evaluating the activity of compounds against intracellular forms of the parasite or for performing in vivo assays. In this work, we describe the generation of L. panamensis and L. donovani strains with constitutive expression of the gene that encodes for an enhanced green fluorescent protein (eGFP) integrated into the locus that encodes for 18S rRNA (ssu). The gene encoding eGFP was obtained from a commercial vector and amplified by polymerase chain reaction (PCR) to enrich it and add restriction sites for the BglII and KpnI enzymes. The eGFP amplicon was isolated by agarose gel purification, digested with the enzymes BglII and KpnI, and ligated into the Leishmania expression vector pLEXSY-sat2.1 previously digested with the same set of enzymes. The expression vector with the cloned gene was propagated in E. coli, purified, and the presence of the insert was verified by colony PCR. The purified plasmid was linearized and used to transfect L. donovani and L. panamensis parasites. The integration of the gene was verified by PCR. The expression of the eGFP gene was evaluated by flow cytometry. Fluorescent parasites were cloned by limiting dilution, and clones with the highest fluorescence intensity were selected using flow cytometry.


Assuntos
Leishmania donovani , Leishmania , Leishmaniose , Humanos , Escherichia coli , Leishmania/genética , Leishmaniose/parasitologia , Proteínas de Fluorescência Verde/genética , Leishmania donovani/genética
2.
J Vis Exp ; (73): e50342, 2013 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-23486405

RESUMO

Unlike other Plasmodium species, P. falciparum can be cultured in the lab, which facilitates its study (1). While the parasitemia achieved can reach the ≈40% limit, the investigator usually keeps the percentage at around 10%. In many cases it is necessary to isolate the parasite-containing red blood cells (RBCs) from the uninfected ones, to enrich the culture and proceed with a given experiment. When P. falciparum infects the erythrocyte, the parasite degrades and feeds from haemoglobin (2, 3). However, the parasite must deal with a very toxic iron-containing haem moiety (4, 5). The parasite eludes its toxicity by transforming the haem into an inert crystal polymer called haemozoin (6, 7). This iron-containing molecule is stored in its food vacuole and the metal in it has an oxidative state which differs from the one in haem (8). The ferric state of iron in the haemozoin confers on it a paramagnetic property absent in uninfected erythrocytes. As the invading parasite reaches maturity, the content of haemozoin also increases (9), which bestows even more paramagnetism on the latest stages of P. falciparum inside the erythrocyte. Based on this paramagnetic property, the latest stages of P. falciparum infected-red blood cells can be separated by passing the culture through a column containing magnetic beads. These beads become magnetic when the columns containing them are placed on a magnet holder. Infected RBCs, due to their paramagnetism, will then be trapped inside the column, while the flow-through will contain, for the most part, uninfected erythrocytes and those containing early stages of the parasite. Here, we describe the methodology to enrich the population of late stage parasites with magnetic columns, which maintains good parasite viability (10). After performing this procedure, the unattached culture can be returned to an incubator to allow the remaining parasites to continue growing.


Assuntos
Separação Celular/métodos , Eritrócitos/parasitologia , Magnetismo/métodos , Plasmodium falciparum/isolamento & purificação , Eritrócitos/citologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA