Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Mar Drugs ; 22(2)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38393060

RESUMO

Marine microorganisms have been demonstrated to be an important source for bioactive molecules. In this paper we report the synthesis of Ni nanoparticles (NiSNPs) used as reducing and capping agents for five bacterial strains isolated from an Antarctic marine consortium: Marinomonas sp. ef1, Rhodococcus sp. ef1, Pseudomonas sp. ef1, Brevundimonas sp. ef1, and Bacillus sp. ef1. The NiSNPs were characterized by Ultraviolet-visible (UV-vis) spectroscopy, Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopic analysis. The maximum absorbances in the UV-Vis spectra were in the range of 374 nm to 422 nm, corresponding to the Surface plasmon resonance (SPR) of Nickel. DLS revealed NiSNPs with sizes between 40 and 45 nm. All NiSNPs were polycrystalline with a face-centered cubic lattice, as revealed by XRD analyses. The NiSNPs zeta potential values were highly negative. TEM analysis showed that the NiSNPs were either spherical or rod shaped, well segregated, and with a size between 20 and 50 nm. The FTIR spectra revealed peaks of amino acid and protein binding to the NiSNPs. Finally, all the NiSNPs possess significant antimicrobial activity, which may play an important role in the management of infectious diseases affecting human health.


Assuntos
Antibacterianos , Nanopartículas Metálicas , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Prata/química , Níquel , Regiões Antárticas , Nanopartículas Metálicas/química , Difração de Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Extratos Vegetais/química
2.
Food Chem ; 439: 138089, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070235

RESUMO

The White Truffle is the most expensive edible underground mushroom. In this study the first characterization of the Acqualagna white truffle was delivered, taking into consideration the soil of origin and the human perception. The volatile profile was identified by GC-MS and compared with the descriptors obtained by sensory analysis. The non-volatile characterization was done using elemental composition by ICP-MS analysis, elemental analysis, and spectrophotometric assays. The volatile profile consists mainly of bis(methylthio)methane (78.72%) and other minor constituents, linked to seven odorant descriptors: garlic-like, nutty-like, geosmine-like, floral, mushroom-like, pungent and green/herbal. ICP-MS revealed that truffle has a higher content of K, P, S, Ca and Mg (97% of the elements investigated) and that it assimilates the Rare Earth Elements (REE) from the soil without discriminating them. In conclusion, this project is the first step for the enhancement of local food, linked to the territory conditions in which it is produced.


Assuntos
Ascomicetos , Humanos , Cromatografia Gasosa-Espectrometria de Massas , Odorantes/análise , Solo
3.
RSC Adv ; 13(28): 19276-19285, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37377865

RESUMO

One of the most concerning environmental problems is represented by petroleum and its derivatives causing contamination of aquatic and underground environments. In this work, the degradation treatment of diesel using Antarctic bacteria is proposed. Marinomonas sp. ef1 is a bacterial strain isolated from a consortium associated with the Antarctic marine ciliate Euplotes focardii. Its potential in the degradation of hydrocarbons commonly present in diesel oil were studied. The bacterial growth was evaluated in culturing conditions that resembled the marine environment with 1% (v/v) of either diesel or biodiesel added; in both cases, Marinomonas sp. ef1 was able to grow. The chemical oxygen demand measured after the incubation of bacteria with diesel decreased, demonstrating the ability of bacteria to use diesel hydrocarbons as a carbon source and degrade them. The metabolic potential of Marinomonas to degrade aromatic compounds was supported by the identification in the genome of sequences encoding various enzymes involved in benzene and naphthalene degradation. Moreover, in the presence of biodiesel, a fluorescent yellow pigment was produced; this was isolated, purified and characterized by UV-vis and fluorescence spectroscopy, leading to its identification as a pyoverdine. These results suggest that Marinomonas sp. ef1 can be used in hydrocarbon bioremediation and in the transformation of these pollutants in molecules of interest.

4.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37108592

RESUMO

Cr(VI) is highly soluble and mobile in water solution and extremely toxic. In order to obtain a specific material with adsorption properties towards Cr(VI), and that can be used in environmental remediation of water contaminated with Cr(VI), one-step sol-gel technique, at low temperature (50 °C), has been optimized to prepare transparent silica-based xerogel monolith by using tetraethyl orthosilicate as precursor. The obtained xerogel, with disk shape, was fully characterized by Raman, BET, FE-SEM and XRD analysis. The results indicated that the material showed silica amorphous phase and high porosity. The study of the adsorption properties towards different concentrations of Cr(VI), in the form of HCrO4- in acidic condition, showed prominent results. The absorption kinetics were evaluated by studying different models, the final result showing that the absorption of Cr(VI) occurred through intra-particle diffusion process, following two steps, and that the absorption equilibrium is regulated by Freundlich isotherm model. The material can be restored by reducing the hazardous Cr(VI) to Cr(III), a less toxic form of chromium, by 1,5-diphenylcarbazide, and with successive treatment in acidic water.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Água , Poluentes Químicos da Água/análise , Dióxido de Silício , Descontaminação , Cromo/análise , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Purificação da Água/métodos
5.
Antioxidants (Basel) ; 12(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37107191

RESUMO

Wine lees are sediments deposited on the walls and bottom of barrels resulting from wine fermentation and mainly consist of yeasts. Saccharomyces cerevisiae extracts, rich in beneficial components for the skin, have already been used in cosmesis, while wine lees have not been well exploited by the cosmetics industry yet. The aim of this work was the full characterization of the wine lees from Verdicchio's wine, with the aim to exploit it as a beneficial ingredient in new cosmetic products. After mapping the microbial composition of the sample waste, the parameters for the sonication extraction process were optimized and the physicochemical properties of the extract were analyzed. The efficiency of the aqueous extraction-and in particular the yeast cell lysis necessary for the release of proteins from the cell-was assessed by evaluating cell shape and size, and protein release, under scanning electron microscopy (SEM), dynamic light scattering (DLS) and Bradford's protein assays. Thus, the total phenol content and antioxidant capacity of the supernatant recovered from native and sonicated lees were determined by Folin-Ciocalteu's and spectrophotometric assays, respectively. To quantify the heavy metals and highlight the presence of microelements beneficial for the skin, inductively coupled plasma-mass spectrometry (ICP-MS) was applied. In vitro metabolic activity and cytotoxicity were tested on both HaCat keratinocytes and human gingival fibroblasts, showing that wine lees are safe for skin's cells. The results show that sonicated lees appear to be more interesting than native ones as a consequence of the release of the active ingredients from the cells. Due to the high antioxidant capacity, content of beneficial elements for skin and an appropriate microbiologic profile, wine lees were included in five new solid cosmetic products and tested for challenge test, compatibility with human skin, sensory analysis, trans epidermal water loss (TEWL) and sebometry.

6.
Gels ; 9(2)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36826304

RESUMO

Poly(ethylene glycol) diacrylate (PEGDA) hydrogels modified with luminescent silver nanoclusters (AgNCs) are synthesized by a photo-crosslinking process. The hybrid material thus obtained is employed to filter Pb(II) polluted water. Under the best conditions, the nanocomposite is able to remove up to 80-90% of lead contaminant, depending on the filter composition. The experimental results indicate that the adsorption process of Pb(II) onto the modified filter can be well modeled using the Freundlich isotherm, thus revealing that the chemisorption is the driving process of Pb(II) adsorption. In addition, the parameter n in the Freundlich model suggests that the adsorption process of Pb(II) ions in the modified hydrogel is favored. Based on the obtained remarkable contaminant uptake capacity and the overall low cost, this hybrid system appears to be a promising sorbent material for the removal of Pb(II) ions from aqueous media.

7.
Nanomaterials (Basel) ; 12(6)2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35335756

RESUMO

Metal effects on the gas sensing behavior of metal complexes of 5,10,15,20-tetrakis(4-hydroxyphenyl)porphyrin (THPP) thin film was investigated in terms of detecting NO2 gas by the planar optical waveguide. For this purpose, several THPP and metal complexes were synthesized with different central metal ions: Co(II), Ni(II), Cu(II), and Zn(II). Planar optical gas sensors were fabricated with the metalloporphyrins deposited on K+ ion-exchanged soda-lime glass substrate with the spin coating method serving as host matrices for gas interaction. All of the THPP complex's films were fully characterized by UV-Vis, IR and XPS spectroscopy, and the laser light source wavelength was selected at 520 and 670 nm. The results of the planar optical waveguide sensor show that the Zn-THPP complex exhibits the strongest response with the lowest detectable gas concentration of NO2 gas for both 520 nm and 670 nm. The Ni-THPP and Co-THPP complexes display good efficiency in the detection of NO2, while, on the other hand, Cu-THPP shows a very low interaction with NO2 gas, with only 50 ppm and 200 ppm detectable gas concentration for 520 nm and 670 nm, respectively. In addition, molecular dynamic simulations and quantum mechanical calculations were performed, proving to be coherent with the experimental results.

8.
Nanomaterials (Basel) ; 11(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209361

RESUMO

Silver nanoparticles (AgNPs) can be used as a surface plasmon resonance (SPR) colorimetric sensor; the correlation between the SPR phenomenon and the aggregation state of nanoparticle allows the real-time detection of a target molecule. Surface functionalization of NPs with proper molecular baits is often performed to establish the selectivity of the sensor. This work reports on the synthesis of AgNPs under reducing conditions and on the functionalization thereof with mercaptoundecanoic acid (11-MUA). UV-VIS Spectroscopy confirmed the formation of AgNPs, eliciting a surface plasmon absorption band (SPAB) at 393 nm that shifted to 417 nm upon surface coating. Dynamic light scattering was used to investigate the surface coatings; moreover, pelleted AgNPs@11MUA nanoparticles were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analyzers (EDX), and infrared spectroscopy to corroborate the presence of 11MUA on the surface. Most interestingly, the resulting AgNPs@11MUA selectively detected micromolar levels of Ni2+, also in the presence of other cations such as Mn2+, Co2+, Cd2+, Cu2+, Zn2+, Fe2+, Hg2+, Pb2+, and Cr3+.

9.
Nanomaterials (Basel) ; 11(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206623

RESUMO

The sensing behavior of a thin film composed of metal-free 5, 10, 15, 20-tetrakis (p-hydroxy phenyl) porphyrin and zinc phthalocyanine complex towards m-xylene, styrene, and HCl vapors in a homemade planar optical waveguide (POWG), was studied at room temperature. The thin film was deposited on the surface of potassium ion-exchanged glass substrate, using vacuum spin-coating method, and a semiconductor laser light (532 nm) as the guiding light. Opto-chemical changes of the film exposing with hydrochloric gas, m-xylene, and styrene vapor, were analyzed firstly with UV-Vis spectroscopy. The fabricated POWG shows good correlation between gas exposure response and absorbance change within the gas concentration range 10-1500 ppm. The limit of detection calculated from the logarithmic calibration curve was proved to be 11.47, 21.08, and 14.07 ppm, for HCl gas, m-xylene, and styrene vapors, respectively. It is interesting to find that the film can be recovered to the initial state with trimethylamine vapors after m-xylene, styrene exposures as well as HCl exposure. The gas-film interaction mechanism was discussed considering protonation and π-π stacking with planar aromatic analyte molecules.

10.
Mar Drugs ; 19(5)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066868

RESUMO

In the last decade, metal nanoparticles (NPs) have gained significant interest in the field of biotechnology due to their unique physiochemical properties and potential uses in a wide range of applications. Metal NP synthesis using microorganisms has emerged as an eco-friendly, clean, and viable strategy alternative to chemical and physical approaches. Herein, an original and efficient route for the microbial synthesis of copper NPs using bacterial strains newly isolated from an Antarctic consortium is described. UV-visible spectra of the NPs showed a maximum absorbance in the range of 380-385 nm. Transmission electron microscopy analysis showed that these NPs are all monodispersed, spherical in nature, and well segregated without any agglomeration and with an average size of 30 nm. X-ray powder diffraction showed a polycrystalline nature and face centered cubic lattice and revealed characteristic diffraction peaks indicating the formation of CuONPs. Fourier-transform infrared spectra confirmed the presence of capping proteins on the NP surface that act as stabilizers. All CuONPs manifested antimicrobial activity against various types of Gram-negative; Gram-positive bacteria; and fungi pathogen microorganisms including Escherichia coli, Staphylococcus aureus, and Candida albicans. The cost-effective and eco-friendly biosynthesis of these CuONPs make them particularly attractive in several application from nanotechnology to biomedical science.


Assuntos
Anti-Infecciosos/farmacologia , Compostos Azo/química , Compostos Azo/farmacologia , Bactérias/metabolismo , Cobre/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/microbiologia , Regiões Antárticas , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Difusão Dinâmica da Luz , Fungos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Química Verde , Microscopia Eletrônica de Transmissão , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
11.
J Microsc ; 283(2): 145-150, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33864639

RESUMO

Based on previous reports on the optical microscopy contrast of mechanically exfoliated few layer CrCl 3 transferred on 285 nm and 270 nm SiO 2 on Si(100), we focus on the experimental determination of an effective mean complex refractive index via a fitting analysis based on the Fresnel equations formalism. Accordingly, the layer and wavelength-dependent absorbance and reflectance are calculated. Layer and wavelength-dependent optical contrast curves are then evaluated demonstrating that the contrast is significantly high only around well-defined wavelength bands. This is validated a posteriori, by experimental UV-Vis absorbance data. The present study aims to show the way towards the most reliable determination of thickness of the 2D material flakes during exfoliation.


In this work, we focus on a fast and accurate determination of the number of layers and thickness of two-dimensional (2D) CrCl 3 flakes. Like exfoliated graphite, MoS 2 or CrI 3 , CrCl 3 has many interesting aspects for its physical properties, namely the magnetic ones. As Raman characterization cannot be used in the case of CrCl 3 for its insensitivity to the flake thickness, optical contrast, as obtained by an optical microscope equipped with a digital camera, can be suitable to determine the number of exfoliated layers in a single flake. Without any additional equipment, the contrast, as routinely optimized by using specific silicon oxide (270 and 285 nm thickness) on Si wafers, can be recorded and compared with Fresnel calculations for the interference. As a result, fitting of the experimental contrast as a function of average values of light wavelength, real and imaginary refraction index provides good sensitivity to the flake thickness and useful determination of the optical parameters. The latter ones are often different from their bulk properties. In addition to optical parameters, the determination is also independent from the light source characteristics. The present approach represents in this a way a precious, fast and cheap way to determine a crucial quantity of the 2D materials flakes production.

12.
Materials (Basel) ; 13(24)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317086

RESUMO

Substituent effect on optical gas sensing performance in porphyrin-based optical waveguide detection system was studied by molecular dynamics simulation (MDS), absorption/emission spectrum analysis, and optical waveguide (OWG) detection. The affinities of porphyrin with seven types of substituents (-H, -OH, -tBu, -COOH, -NH2, -OCH3, -SO3-) on para position of meso-phenyl porphyrin toward gas molecules in adsorption process were studied in different size of boxes with the same pressure and concentration. Analyte gases (CO2, H2S, HCl, NO2) were exposed to porphyrin film in absorption spectrophotometer, and in OWG with evanescent field excited by a guiding laser light with 670 nm wavelength. The extent of interaction between host molecule and the guest analytes was analyzed by the number of gas molecules in vicinity of 0.3 nm around substituents of porphyrin molecules. Optical waveguide results reveal that sulfonate porphyrin is mostly responsive to hydrochloride, hydrosulfide gas and nitrogen dioxide gases with strong response intensity. Molecular dynamics and spectral analysis provide objective information about the molecular state and sensing properties. Molecular rearrangements induced by gas exposure was studied by spectral analysis and surface morphology before and after gas exposure taking hydrosulfide gas as an example. Film-gas interaction mechanism was discussed in terms of each gas and substituent group characters.

13.
Antioxidants (Basel) ; 9(5)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365615

RESUMO

The purpose of this work was the optimization of the extraction from spent coffee grounds, specifically 100% Arabica coffee blends, using a desirability approach. Spent coffees were recovered after the preparation of the espresso coffee under the typical conditions used in coffee bars with a professional machine. Spent coffee was subjected to different extraction procedures in water: by changing the extraction temperature (60, 80, or 100 °C) and the solvent extraction volume (10, 20, 30 mL for 1 gram of coffee) and by maintaining constant the extraction time (30 minutes). The ranges of the process parameters, as well as the solvent to be used, were established by running preliminary experiments not reported here. The variables of interest for the experimental screening design were the content of caffeine, trigonelline, and nicotinic acid, quantitatively determined from regression lines of standard solutions of known concentrations by a validated HPLC-VWD method. Since solvent extraction volumes and temperatures were revealed to be the most significant process variables, for the optimization of the extraction process, an approach based on Response Surface Methodology (RSM) was considered. In particular, a Box-Wilson Central Composite Design, commonly named central composite design (CCD), was used to find the optimal conditions of the extraction process. Moreover, the desirability approach was then applied to maximize the extraction efficiency by searching the optimal values (or at least the best compromise solution) for all three response variables simultaneously. Successively, the best extract, obtained in a volume of 20 mL of water at an extraction temperature of 80 °C, was analyzed for total phenol content (TPC) through the Folin-Ciocalteu assay, and the antioxidant capacities (AC) through the trolox equivalent (TE) antioxidant capacity (DPPH), ferric-ion reducing antioxidant parameter (FRAP), and radical cation scavenging activity and reducing power (ABTS). The TPC and the AC for spent coffee were high and comparable to the results obtained in previous similar studies. Then, the extract was evaluated by inductively coupled plasma mass spectrometry (ICP-MS), revealing that potassium was the most abundant element, followed by phosphorus, magnesium, calcium, sodium, and sulfur, while very low content in heavy metals was observed. Preliminary in vitro assays in keratinocyte HaCaT cells were carried out to assess the safety, in terms of cytotoxicity of spent coffee, and results showed that cell viability depends on the extract concentration: cell viability is unmodified up to a concentration of 0.3 mg/mL, over which it becomes cytotoxic for the cells. Spent coffee extract at 0.03 and 0.3 mg/mL showed the ability to reduce intracellular reactive oxygen species formation induced by hydrogen peroxide in HaCaT cells, suggesting its antioxidant activity at intracellular levels.

14.
Antioxidants (Basel) ; 9(4)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316684

RESUMO

Chemical and sensory peculiarities of monovarietal extra virgin olive oils (MEVOOs) from the cultivars (cvs.) Ascolana tenera (ASC), Coroncina (COR), Mignola (MIG), Piantone di Mogliano (MOG), and Raggia (RAG) from Marche region (Italy) are investigated. Their polar phenolic substances and α-tocopherol are analysed through high performance liquid chromatography with different detectors. Volatile substances, fatty acid composition, and squalene are analysed by gas chromatography coupled to mass spectrometry (MS) and to the flame ionization detector, respectively. Total antioxidant activity and sensory analysis were also performed. MOG showed high squalene content (on average 0.88 ± 0.16 g/100 g), high relative amount of α-copaene among volatiles, and the highest oleic acid percentage. MIG had high α-tocopherol content (on average 350.0 ± 57.6 mg kg-1) and high α-farnesene in the volatile fraction. ASC showed the highest sensory quality and the lignan pinoresinol with higher concentration as compared to the other MEVOOs (p < 0.05), which resulted in a possible chemical marker for this cv. RAG was characterized by the sensory note of almond, which corresponds to its highest (E)-2-hexenal percentage. Sensory analysis and an antioxidant activity assay performed on a set of industrial extra virgin olive oils purchased in supermarkets, highlighted MEVOOs' superiority from these points of view. Principal component analysis displays the main characteristics of the cvs. investigated.

15.
Nanomaterials (Basel) ; 8(8)2018 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-30087248

RESUMO

The effect of surface modification using ascorbic acid as a surface modifier of nano-TiO2 heterogeneous photocatalyst was studied. The preparation of supported photocatalyst was made by a specific paste containing ascorbic acid modified TiO2 nanoparticles used to cover Polypropylene as a support material. The obtained heterogeneous photocatalyst was thoroughly characterized (scanning electron microscope (SEM), RAMAN, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL), and Diffuse Reflectance Spectra (DRS) and successfully applied in the visible light photodegradation of Alizarin Red S in water solutions. In particular, this new supported TiO2 photocatalyst showed a change in the adsorption mechanism of dye with respect to that of only TiO2 due to the surface properties. In addition, an improvement of photocatalytic performances in the visible light photodegration was obtained, showing a strict correlation between efficiency and energy band gap values, evidencing the favorable surface modification of TiO2 nanoparticles.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 193: 235-248, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29247920

RESUMO

The effect of pH change on 5,10,15,20-Tetrakis(4-hydroxyphenyl)-21H,23H-porphine (THPP) with its aggregation as function of water-ethanol mixture was studied with UV-vis, fluorescence, Raman and computational analysis. In neutral pH, THPP was present as free-base and, increasing the water amount, aggregation occurred with the formation of H- and J-aggregates. The aggregation constant and the concentration of dimers were calculated, other information about the dimer aggregation were evaluated by computational study. In acidic pH, by the insertions of two hydrogens in the porphyrin rings, the porphyrin changed its geometry with a ring deformation confirmed by red-shifted spectrum and quenching in fluorescence; at this low pH, increasing the water amount, the acidic form (THPPH2)2+ resulted more stable due to a polar environment with stronger interaction by hydrogen bonding. In basic pH, reached by NH4OH, THPP porphyrin was able to react with alkali metals in order to form sitting-atop complex (M2THPP) confirmed by the typical absorption spectrum of metallo-porphyrin, Raman spectroscopy and by computational analysis.

17.
ACS Appl Mater Interfaces ; 8(43): 29676-29687, 2016 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-27762551

RESUMO

Novel composite materials PEn (n = 1-9) have been prepared by an easily up-scalable embedding procedure of three different families of Ag(I) acylpyrazolonato complexes in polyethylene (PE) matrix. In details, PE1-PE3 composites contain polynuclear [Ag(QR)]n complexes, PE4-PE6 contain mononuclear [Ag(QR)(L)m] complexes and PE7-PE9 are loaded with mononuclear [Ag(QR) (PPh3)2] complexes, respectively (where L = 1-methylimidazole or 2-ethylimidazole, m = 1 or 2, and HQR = 1-phenyl-3-methyl-4-RC(═O)-5-pyrazolone, where in detail HQfb, R = -CF2CF2CF3; HQcy, R = -cyclo-C6H11; HQbe, R = -C(H)═C(CH3)2). The PEn composites, prepared by using a 1:1000 w/w silver additive/polyethylene ratio, have been characterized in bulk by IR spectroscopy and TGA analyses, which confirmed that the properties of polyethylene matrix are essentially unchanged. AFM, SEM, and EDX surface techniques show that silver additives form agglomerates with dimensions 10-100 µm on the polyethylene surface, with a slight increment of surface roughness of pristine plastic within 50 nm. However, the elastic properties of the composites are essentially the same of PE. The antibacterial activity of all composites has been tested against three bacterial strains (E. coli, P. aeruginosa and S. aureus) and results show that two classes of composites, PE1-PE3 and PE4-PE6, display high and persistent bactericidal and bacteriostatic activity, comparable to PE embedded with AgNO3. By contrast, composites PE7-PE9 exhibit a reduced antibacterial action. Contact and release tests in several conditions for specific migration of Ag+ from plastics, indicate a very limited but time persistent release of silver ions from PE1-PE6 composites, thus suggesting that they are potential antibacterial materials for future applications. Instead, PE7-PE9 almost do not release silver, only trace levels of silver ions being detected, in accordance with their reduced antibacterial action. None of the composites is toxic against higher organisms, as confirmed by D. magna test of ecotoxicity.


Assuntos
Polietileno/química , Antibacterianos , Escherichia coli , Prata , Staphylococcus aureus
18.
Artigo em Inglês | MEDLINE | ID: mdl-26282320

RESUMO

UV-vis and fluorescence investigations about the non-covalent interaction, in ethanolic solutions, of multi-wall carbon nanotube (MWCNT) with Coproporphyrin-I, and its Cu(II) and Zn(II) complexes (MCPIs) have been reported. Evidence of binding between MWCNTs and porphyrins was discovered from spectral adsorption decrease with respect to free porphyrins and by the exhibition of photoluminescence quenching with respect to free porphyrins demonstrating that MWCNT@MCPIs are potential donor-acceptor complexes. Equilibrium and kinetic aspects in the interactions with monolayer transparent TiO2 thin films with the obtained MWCNT@MCPIs are clarified showing their effective adsorption by porphyrin links on the TiO2 monolayer support, with respect to not only MWCNTs, according to the Langmuir model and with pseudo-first-order kinetics. Morphological description of the adsorption of MWCNT@MCPIs on TiO2 with scanning electron microscopy has been reported. The obtained experimental evidences describe therefore MWCNT@MCPIs as potential sensitizers in the DSSC (Dye-Sensitized Solar Cell) applications.

19.
Toxics ; 4(1)2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-29051409

RESUMO

Hair is a non-invasive biological material useful in the biomonitoring of trace elements because it is a vehicle for substance excretion from the body, and it permits evaluating long-term metal exposure. Here, hair from an animal model of neurodegeneration, induced by early life permethrin treatment from the sixth to 21th day of life, has been analyzed with the aim to assess if metal and microelement content could be used as biomarkers. A hair trace element assay was performed by the ICP-MS technique in six- and 12-month-old rats. A significant increase of As, Mg, S and Zn was measured in the permethrin-treated group at 12 months compared to six months, while Si and Cu/Zn were decreased. K, Cu/Zn and S were increased in the treated group compared to age-matched controls at six and 12 months, respectively. Cr significantly decreased in the treated group at 12 months. PCA analysis showed both a best difference between treated and age-matched control groups at six months. The present findings support the evidence that the Cu/Zn ratio and K, measured at six months, are the best biomarkers for neurodegeneration. This study supports the use of hair analysis to identify biomarkers of neurodegeneration induced by early life permethrin pesticide exposure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA