Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale Adv ; 6(15): 3809-3824, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39050955

RESUMO

The global adoption of by-product valorisation processes aligns with the circular economy framework, ensuring sustainability in the agricultural sector. In cocoa production, residual biomass can offer the opportunity to extract advanced materials, contributing to nanotherapeutic solutions for biomedical applications. This study explores extraction processes for valorising cocoa pod husks (CPHs) and optimising valuable cocoa-derived biocompounds for enhanced health benefits. Various extraction processes are compared, revealing the significant influence of CPH powder amount and extraction time. Furthermore, metabolic analysis identifies 124 compounds in the metabolite mix, including tartaric acid, gluconic acid and bioactive agents with antioxidant properties, resulting in a high total phenolic content of 3.88 ± 0.06 mg g-1. Moreover, the extracted pectin, obtained through alkaline and enzymatic routes, shows comparable yields but exhibits superior antioxidant capacity compared to commercial pectin. The study progresses to using these extracted biocompounds to develop Layer-by-Layer multifunctionalised nanoparticles (LbL-MNPs). Physico-chemical characterisation via ζ-potential, FTIR-ATR, and XPS confirms the successful multilayer coating on mesoporous silica nanoparticles (MNPs). TEM analysis demonstrates a uniform and spherical nanoparticle morphology, with a size increase after coating. In vitro biological characterisation with neo-dermal human fibroblast cells reveals enhanced metabolic activity and biocompatibility of LbL-MNPs compared to bare MNPs. Also, the engineered nanoparticles demonstrate a protective effect against H2O2-induced intracellular oxidative stress on human dermal fibroblast cell lines, showcasing their potential as antioxidant carriers for biomedical applications.

2.
Heliyon ; 10(10): e31506, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38818199

RESUMO

Neo-formed contaminants (NFCs) are common in many foods, especially those subjected to high-temperature processing. Among these contaminants, products arising from the Maillard reaction, sugar reduction, thermal degradation of polyphenols and lipid oxidation, including acrylamide, furan, furfuryl alcohol, and hydroxymethylfurfural, are consistently linked to potential neoplastic effects. NFCs are found in globally traded commodities like coffee and cocoa, posing a significant risk due to their frequent consumption by consumers. A direct correlation exists between consumption frequency, exposure levels, and health risks. Hence, it's crucial to establish reliable methods to determine levels in both matrices, aiming to mitigate their formation and minimise risks to consumers. This review offers a comprehensive examination, discussion, and identification of emerging trends and opportunities to enhance existing methodologies for extracting and quantifying NFCs in coffee and cocoa. By presenting an in-depth analysis of performance parameters, we aim to guide the selection of optimal extraction techniques for quantifying individual NFCs. Based on the reviewed data, headspace extraction is recommended for furan, while solid and dispersive solid phase extractions are preferred for acrylamide when quantified using gas and liquid chromatography, respectively. However, it is worth noting that the reported linearity tests for certain methods did not confirm the absence of matrix effects unless developed through standard addition, leading to uncertainties in the reported values. There is a need for further research to verify method parameters, especially for determining NFCs like furfuryl alcohol. Additionally, optimising extraction and separation methods is essential to ensure complete compound depletion from samples. Ideally, developed methods should offer comprehensive NFC determination, reduce analysis time and solvent use, and adhere to validation parameters. This review discusses current methods for extracting and quantifying NFCs in coffee and cocoa, highlighting emerging trends and emphasising the need to improve existing techniques, especially for compounds like furfuryl alcohol.

3.
Heliyon ; 9(7): e17736, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37449143

RESUMO

Biomass resulting from food production represents valuable material to recover different biomolecules. In our study, we used apple pomace to obtain pectin, which is traditionally extracted using mineral acids. Our hypothesis consisted of carrying out extractions with organic acids, assisted by ultrasound, by varying processing parameters including time, temperature, and type of acid. The analytical determinations of galacturonic acid content, methoxylation and esterification degree, ζ-potential and extraction yield were used as pectin quality indicators. Pectins extracted using treatment conditions with better performance were assessed biologically in vitro for their potential to be used in biomedical applications. Overall, the extracted pectin presented a galacturonic acid content, methoxylation and esterification degree ranged from 19.7 to 67%, 26.8-41.4% and 58-65.2% respectively, and were negatively charged (-24.1 to -13.2 mV). It was found that factors of time and temperature greatly influenced the response variables excepting the esterification degree, while the acid type influenced the ζ-potential, methoxylation and esterification degrees. Additionally, it was seen that the longer extraction time (50 min) and higher temperature (50 °C) exhibited the better extraction yield (∼10.9%). Finally, the selected pectin showed high cytocompatibility up to 500 µg/mL of concentration when seeded with Neonatal Normal Human Dermal Fibroblasts.

4.
Carbohydr Polym ; 271: 118429, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364569

RESUMO

This study investigated the impact of heterogeneity of crosslinking on a range of physical and mechanical properties of calcium alginate networks formed via external gelation with 0.25-2% sodium alginate and 2.5 and 5% CaCl2. Crosslinking in films with 1-2% alginate was highly heterogeneous, as indicated by their lower calcium content (35-7 mg Ca·g alginate-1) and apparent solubility (5-6%). Overall, films with 1-2% alginate showed higher resistance (tensile strength = 51-147 MPa) but lower elasticity (Elastic Modulus = 2136-10,079 MPa) than other samples more homogeneous in nature (0.5% alginate, Elastic Modulus = 1918 MPa). Beads with 0.5% alginate prevented the degradation of ß-carotene 1.5 times more efficiently than 1% beads (5% CaCl2) at any of the storage temperatures studied. Therefore, it was postulated that calcium alginate networks crosslinked to a greater extent and in a more homogeneous manner showed better mechanical performance and barrier properties for encapsulation applications.


Assuntos
Alginatos/química , Portadores de Fármacos/química , beta Caroteno/química , Cloreto de Cálcio/química , Reagentes de Ligações Cruzadas/química , Módulo de Elasticidade , Oxirredução , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA